• Title/Summary/Keyword: Irrigation rate

Search Result 425, Processing Time 0.033 seconds

Effect of Furrow Irrigation on the Growth and Quality of Panax Ginseng Plant in a Loam (고랑관수에 의한 수분공급이 인삼의 생육에 미치는 영향)

  • Park, Chol-Soo;Kang, Je-Yong;Lee, Dong-Yun;Ahn, Dae-Jin
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.279-282
    • /
    • 2008
  • This study was conducted to compare the aerial parts growth, yield of fresh ginseng roots, quality of red ginseng roots, and photosynthesis (Fv/Fm, PSII) in leaves between non-irrigation plot and furrow irrigation plot during the ginseng growing seasons. The aerial part growth in furrow irrigation plot was higher than non-irrigation plot in all including the emergency rate, leafing rate and relatively growth rate. Root yield per 10a in irrigation plot was increased about 50% as compared with that of non-irrigation, also heaven and earth grade of red ginseng roots yield in irrigation plot was higher (40.3%) compared with that (30.6%) of non-irrigation plot in 6-years-old ginseng plant. Furrow irrigation markedly improved the ginseng quality and yield in comparison to non irrigation condition. Therefore it needs to control the soil moisture during the growing season for high yield and good qualities of ginseng roots.

Analysis of Water Loss Rate and Irrigation Efficiency in Irrigation Canal at the Dong-Jin District (동진지구 관개용수로의 손실률 및 관개효율 분석)

  • Hong, Eun-Mi;Choi, Jin-Yong;Nam, Won-Ho;Lee, Sang-Hyun;Choi, Jin-Kyu;Kim, Jin-Taek
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.93-101
    • /
    • 2015
  • The purpose of this study is to evaluate the paddy irrigation efficiency using real-time water level monitoring data and intermittent irrigation model in Gimjae, Dong-Jin irrigation district. For this study, the real-time water level data in Gimjae main canal and other secondary canals were collected from 2012 to 2014 and converted to daily discharge using rating curve in each canal. From intermittent irrigation model in paddy, irrigation water requirement was estimated and irrigation efficiency was calculated. The average amount of irrigation water supply per unit irrigation area was 1,011 mm in Gimjae main canal for 12,749 ha irrigation area, 1,011 mm in the secondary canal of upper region and 1,470 mm in the secondary canal of lower region. The median irrigation loss was 43 % in Gimjae main canal, 25 % in secondary canal of upper region and 35 % in the secondary canal of lower region. The larger irrigation area is, the irrigation loss rates tend to decrease in secondary canals. Monthly median irrigation losses in upper region were 10 (June) - 40 % (September) and those in lower region were 25 (May) to 40 % (April, June, August, and September). The results of canal management loss can be available as the basic data for irrigation water management and estimating guideline of optimal irrigation water supply to improve agricultural water use efficiencies.

Chronic Subdural Hematomas : A Comparative Study of Three Types of Operative Procedures

  • Lee, Joon-Kook;Choi, Jong-Hun;Kim, Chang-Hyun;Lee, Ho-Kook;Moon, Jae-Gon
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.3
    • /
    • pp.210-214
    • /
    • 2009
  • Objective : Several surgical procedures have been reported for the treatment of chronic subdural hematoma (CSDH). We compared the results of treatments for CSDH obtained from one burr-hole craniostomy with closed system drainage with or without irrigation, two burr-hole craniostomy with closed system drainage with irrigation, and small craniotomy with irrigation and closed-system drainage. Methods : Eighty-seven patients with CSDH underwent surgery at our institution from January 2004 to December 2008. Our patients were classified into three groups according to the operative procedure; group I, one burr-hole craniostomy with closed system drainage with or without irrigation (n=25), group II, two burr-hole craniostomy with closed system drainage with irrigation (n=32), and group III, small craniotomy with irrigation and closed-system drainage (n=30). Results : Age distribution, male and female ratio, Markwalder's grade on admission and at the time of discharge, size of hematoma before and after surgery, duration of operation, Hounsfield unit of hematoma before and after surgery, duration of hospital treatment, complication rate, and revision rate were categories that we compared between groups. Duration of operation and hospitalization were only two categories which were different. But, when comparing burr hole craniostomy group (group I and group II) with small craniotomy group (group III), duration of post-operative hospital treatment, complication and recurrence rate were statistically lower in small craniotomy group, even though operation time was longer. Conclusion : Such results indicate that small craniotomy with irrigation and closed-system drainage can be considered as one of the treatment options in patients with CSDH.

Estimating Irrigation Requirement for Rice Cropping under Flooding Condition using BUDGET Model

  • Seo, Mi-jin;Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.246-254
    • /
    • 2015
  • This study explored the effect of rainfall pattern and soil characteristics on water management in rice paddy fields, using a soil water balance model, BUDGET. In two sites with different soil textural group, coarse loamy soil (Gangseo series) and fine soil (Hwadong series), respectively, we have monitored daily decrease of water depth, percolation rate, and groundwater table. The observed evapotranspiration (ET) was obtained from differences between water depth decrease and percolation rate. The root mean square difference values between observed and BUDGET-estimated ET ranged between 10% and 20% of the average observed ET. This is comparable to the measurement uncertainty, suggesting that the BUDGET model can provide reliable ET estimation for rice fields. In BUDGET model of this study, irrigation requirement was determined as minimum water need for maintaining water-saturated soil surface, assuming 100 mm of bund height and no lateral loss of water. The model results showed different water balance and irrigation requirement with the different soil profile and indicated that minimum percolation rate by plow pan could determine the irrigation requirement of rice paddy field. For the condition of different rainfall distribution, the results presented different irrigation period and amounts, representing the importance of securing water for irrigation against different rainfall pattern.

Irrigation Frequency and Nitrogen Rates for Tall Fescue Growth

  • Lee, Sang-Kook
    • Weed & Turfgrass Science
    • /
    • v.3 no.2
    • /
    • pp.130-136
    • /
    • 2014
  • Tall fescue is commonly well-adapted for low maintain area because of its wear resistance, deep root system, and drought tolerances. Deep and infrequent irrigation refers to applying large amounts of irrigation, 1.3 to 2.5 cm or more, in a single irrigation event. Light and frequent irrigation is commonly used with small amounts of water, 0.3 to 0.6 cm, every day or every other day. N use for turfgrass management is often unnoticed for water management. The objective of this field study was to evaluate the effects of irrigation frequency and N rates for tall fescue growth. The three irrigation treatments were no irrigation (precipitation only), 0.5 cm applied every other day, and 1.8 cm applied once a week at one irrigation event. The nitrogen (N) treatments were the low, medium, and high N rate treatments. The low, medium, and high N treatments were applied over 2, 4, and 6 applications, respectively. If high main maintenance of tall fescue is not important and water source is limited, irrigation is not necessary and, the $9.8gNm^{-2}yr^{-1}$ of two applications can be recommended for tall fescue under the weather condition of the study.

Effects of Irrigation Methods of Deep Sea Water on the Growth of Plug Seedlings (육묘 시 해양심층수의 관수 방법이 유묘의 생장에 미치는 영향)

  • Hong Sung-Yu;Yoon Byeong-Sung;Kang Won-Hee
    • Journal of Bio-Environment Control
    • /
    • v.15 no.2
    • /
    • pp.156-161
    • /
    • 2006
  • Overhead and sub-irrigation of deep sea water to tomato seedlings reduced the height as 50% and 58% than control plants. In the same treatment with surface sea water and NaCl water, the reduced rate in tomato seedlings' height were 49% and 56% in overhead irrigation, and 47% and 57% in sub-irrigation, respectively. Most effective method for the inhibition of the growth of the seedling was sub-irrigation method, which supplied water through the roots. No significant difference was observed on fresh weight of the upper part of tomato and cucumber seedlings, though the sub-irrigation reduced the fresh weight than the overhead irrigation. The reduced rate of fresh weight of seedlings by overhead irrigation was by 38% and sub-irrigation by 49% as compared to control. Similarly dry weight of upper and under soil parts of seedlings showed same trend of results thereof as fresh weight. This result can be traced to reduction of growth caused by salts in the water. In stem diameter of seedlings no significant difference was observed between two irrigation methods, even though both deep sea and NaCl water reduced stem diameter, as compared to control water. Overhead irrigation can be chosen by seedling producers because of better seedling quality by using TH ratio. Seedling compactness were not noticed in both the overhead and sub-irrigation. Sub-irrigation was found more effective method far the inhibition of height and compactness of tomato seedlings. Higher the concentration of NaCl, deep sea, and surface sea water, lesser the growth in height, fresh and dry weight, stem diameter, and leaf area was obtained. No significant difference was found, though sub-irrigation suppress the growth of seedlings.

Development of Agricultural Water Circulation Rate Considering Agricultural Reservoir and Irrigation District (농업용 저수지 및 관개지구를 고려한 농업유역 물순환율 개발)

  • Kim, Seokhyeon;Song, Jung-Hun;Hwang, Soonho;Kim, Hak-Gwan;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.83-95
    • /
    • 2020
  • The water circulation in agricultural watersheds changes with the operation of agricultural reservoirs, it is necessary to classify and evaluate them into upstream, agricultural reservoirs, irrigation districts, and downstream. Therefore, in this study, we developed the agricultural water circulation rate (AWCR) considering an agricultural reservoir and irrigation district by improving the water circulation rate of the Water environmental conservation Act. we applied it to Jinwi watershed using the module-based hydrologic analysis system to simulate the water circulation for agricultural reservoirs and irrigation areas. The model performance during the validation period was NSE of 0.762 for the downstream stream and 0.682 for the reservoir level. And the hydrograph separation model was applied to separate the direct and baseflow. As a result of this study, The AWCR of Jinwi watershed was 71.8% on average, which was higher than the water circulation rate estimated by the downstream hydrograph separation.

Determination of Proper Irrigation Scheduling for Automated Irrigation System based on Substrate Capacitance Measurement Device in Tomato Rockwool Hydroponics (토마토 암면재배에서 정전용량 측정장치를 기반으로 한 급액방법 구명)

  • Han, Dongsup;Baek, Jeonghyeon;Park, Juseong;Shin, Wonkyo;Cho, Ilhwan;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.366-375
    • /
    • 2019
  • This experiment aims to determine the proper irrigation scheduling based on a whole-substrate capacitance using a newly developed device (SCMD) by comparing with the integrated solar radiation automated irrigation system (ISR) and sap flow sensor automated irrigation system (SF) for the cultivation of tomato (Solanum lycopersicum L. 'Hoyong' 'Super Doterang') during spring to winter season. For the SCMD system, irrigation was conducted every 10 minutes after the first irrigation was started until the first run-off was occurred, of which the substrate capacitance was considered to be 100%. When the capacitance threshold (CT) was reached to the target point, irrigation was re-conducted. After that, when the target drain volume (TDV) was occurred, the irrigation stopped. The irrigation volume per event for the SCMD was set to 50, 75, or 100 mL at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the CT was set to 0.65, 0.75, 0.80, or 0.90 in the winter cultivation. When the irrigation volume per event was set to 50, 75, or 100 mL, the irrigation frequency in a day was 39, 29, and 19, respectively, and the drain rate was 3.04, 9.25, and 20.18%, respectively. When the CT was set to 0.65, 0.75, or 0.90 in winter, the irrigation frequency was about 6, 7, 15 times, respectively and the drain rate was 9.9, 10.8, 35.3% respectively. The signal of stem sap flow at the beginning of irrigation starting time did not correspond to that of solar irradiance when the irrigation volume per event was set to 50 or 75 mL, compared to that of 100 mL. In winter cultivation, the stem sap flow rate and substrate volumetric water content at the CT 0.65 treatment were very low, while they were very high at CT 0.90 was high. All the integrated data suggest that the proper range of irrigation volume per event is from 75 to 100 mL under at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the proper CT seems to be higher than 0.75 and lower than 0.90 under at 75 mL of the irrigation volume per event and TDV 70 mL during the winter cultivation. It is going to be necessary to investigate the relationship between capacitance value and substrate volumetric water content by determining the correction coefficient.

Drought Resistance of Several Soybean Cultivars (주요대두품종(主要大豆品種)의 내건성(耐乾性)에 관(關)한 연구(硏究))

  • Choi, Chang Yeol
    • Korean Journal of Agricultural Science
    • /
    • v.15 no.1
    • /
    • pp.36-46
    • /
    • 1988
  • Twelve soybean cultivars were cultivated in the 1/2,000a. Wagner pots with irrigation and without irrigation for 30 days after flowering, and the differences of plant growth and bean yield among cultivars were compared. And to investigate the varietal differences in the rate of photosynthesis under different relative humidity, 6soybean cultivars were cultivated in 1/2,000a. Wagner pot and the rate of photosynthesis of each soybean cultivar at flowering time was measured under the relative humidity of 80, 70, 60, 50 and 40%. The results obtained are summarized as follows; 1. The days to maturity of the soybean cultivars were shortened by non-irrigation treatment. The response of the maturing dates to non-irrigation was significantly different among the soybean cultivars. The days for maturing of Paldal, Danyeob and Eundaedu were delayed 2 days but those of Jangbaek and Tamahomare were delayed about 7 to 8 days under non-irrigation treatment. 2. The stem length, stem diameter, number of nodes of the mainstem, number of branches and number of branch nodes of all soybean cultivars were decreased by non-irrigation treatment. The number of branches and the number of branch nodes were especially severely influenced by non-irrigation treatment. 3. The number of pods per plant and the number of perfect pods was significantly reduced by non-irrigation treatment but the number of imperfect pods was increased. The non-irrigation treatment reduced the number of pods per plant by 58.0% and the ratio of the number of the perfect pods per plant by 46.6% relative to the ordinary cultivation with irrigation. 4. The grain yield of all cultivars was significantly reduced by the non-irrigation treatment, and average grain yield of soybean cultivars cultivated under non-irrigation treatment was 35.9% of that of soybean cultivars cultivated with irrigation. The influence of non-irrigation treatment was lowest in Paldal and significantly high in Tamahomare and Jangbaek. 5. The rate of photosynthesis of soybean leaves was significantly different among cultivars and was also influenced by relative humidity. Ratio of the photosynthetic amount of soybean leaves at 40% RH to the maximum photosynthesis at optimal humidity was 97.2% in Paldal, 96.4% in Danyeob and 88.8% in Baekun. 6. At 40% relative air humidity, highly significant correlations were found among the photosynthesis rate, the amount of transpiration and the respiration rate.

  • PDF

An Analysis of Contribution Rates of Irrigation Water and Investment for Farmland Base Development Project to Rice Production (농업용수(農業用水)와 농업생산기반조성사업투자(農業生産基盤造成事業投資)의 미곡생산기여도(米穀生産寄與度) 분석(分析))

  • Lim, Jae-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.31 no.2
    • /
    • pp.135-148
    • /
    • 2004
  • Rice is not only main food but also key farm income source of Korean farmers. In spite of the above facts, rice productivity was decreased on account of drought in every 2 or 3 years interval owing to the vulnerability of irrigation facilities throughout Korea in the past decades. As an context of the first five year economic development plan, all weather farming programme including 4 big river basin comprehensive development projects and large and medium sized irrigation water development projects were carried out successfully. Therefore the area of irrigated paddy were increased from 58% in 1970 to 76.2% in 1999. In the past decades, the Government had invested heavy financial funds to develop irrigation water but as an factor share analysis, the contribution rates of irrigation water and investment for farmland base development project have not been identified yet in national agricultural economic level. It is very scarce to find out the papers concerned to macro-economic factor share analysis or contribution rates of water and investment cost to rice production value in Korea considering the production function of the quantity of irrigation water and investment cost as independent variables. Accordingly this paper covered and aimed at identifying (1) derivation of rice production function with the time serial data from 1965 to 1999 and the contribution rates of irrigation water and total investment cost for farmland base development project. The analytical model of the contribution rates was adapted the famous Cobb-Douglass production function. According to the model analysis, the contribution rate of irrigation water to rice production in Korea was shown 37.8% which was equivalent to 0.28 of the production elasticity of water. The contribution rate of farmland base development project cost was revealed 22% and direct production cost of rice was contributed 60% in the growth of rice production and farm mechanization costs contributed to 18% of it respectively. The two contribution rates comparing with the direct production cost were small but without irrigation water and farmland base development, application of high-pay off inputs and farm mechanization might be impossible. Considering the food security and to cope with the frequent drought, rice farming and investment for the irrigation water development should be continued even in WTO system.

  • PDF