• Title/Summary/Keyword: Irrigation and Drainage

Search Result 1,100, Processing Time 0.024 seconds

Comparison on Irrigation Management Methods by Integrated Solar Radiation and Drainage Level Sensor in Rockwool and Coir Bag Culture for Tomato (토마토의 암면과 코이어 자루재배시 일사량제어법과 배액전극제어법에 의한 급액제어 방법 비교)

  • Kim, Sung-Eun;Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.19 no.1
    • /
    • pp.12-18
    • /
    • 2010
  • Irrigation management methods controlled by integrated solar radiation (ISR) or drainage level sensor were evaluated in rockwool or coir bag culture as tomato (Solanum lycopersicum L.) production system. Substrate water content and drainage percentage were more stable in the drainage level sensor method than in the ISR method regardless of substrate type. Total yield and marketable yield were high in the drainage level sensor method, but not between substrates in the same irrigation management method. Sugar content was affected more by the substrate type than irrigation method. The drainage level sensor method was elucidated to be better than the ISR method regardless of substrate type.

Effects of Subwatershed Delineation on SWAT Estimation (소유역구분이 SWAT 예측치에 미치는 영향 평가)

  • Heo, Seong-Gu;Kim, Gi-Seong;An, Jae-Hun;Im, Gyeong-Jae;Choe, Jung-Dae
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.262-273
    • /
    • 2006
  • The Soil and Water Assessment Tool (SWAT) model has been widely used in hydrology and sediment simulation worldwide. In most cases, the SWAT model is first calibrated with adjustments in model parameters, and then the validation is performed. However, very little study regarding the effects on SWAT estimation of subwatershed delineation was performed. Thus, the SWAT model was applied to the Doam-dam watershed with various threshold values in subwatershed delineation in this study to examine the effects on the number of subwatershed delineated on SWAT estimation. It was found the flow effect of subwatershed delineation is negligible. However there were huge variations in SWAT estimated sediment, T-N, and T-P values with the use of various threshold value in watershed delineation. Sometimes these variations due to watershed delineation are beyond the effects of parameter adjustment in model calibration and validation. The SWAT is a semi-distributed modeling system, thus, the subwatershed characteristics are assumed to be the same for all Hydrologic Response Unit (HRU) within that subwatershed. This assumption leads to variations in the SWAT estimated sediment and nutrient output values. Therefore, it is strongly recommended the SWAT users need to use the HUR specific slope length and slope value in model runs, instead of using the slope and the corresponding slope length of the subawatershed to exclude the effects of the number of subwatershed delineated on the SWAT estimation.

  • PDF

Characteristics of Pollutant Loading from Paddy Field Area with Groundwater Irrigation (지하수 관개지역 논에서의 배출부하 특성)

  • 윤춘경;김병희;전지홍;황하선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.116-126
    • /
    • 2002
  • Discharge pattern and water quality were investigated in the drainage water from about 10 ha of groundwater-irrigated paddy field in the growing season of 2001. Total discharge quantity was about 1,117.2 mm in which about 75% was caused by management drainage due to cultural practice of paddy rice farming and the rest by rainfall runoff where total rainfall was about 515 mm. Dry-day sampling data showed wide variations in constituent concentrations with average of 26.14 mg/L, 0.37 mg/L, 3.54 mg/L at the inlet, and 43.60 mg/L, 0.34 mg/L, 3.58 mg/L at the outlet for CO $D_{cr}$ , T-P, and T-N, respectively. Wet-day sampling data demonstrated that generally CO $D_{cr}$ followed the discharge pattern and T-P was in opposite to the discharge pattern, but T-N did not show apparent pattern to the discharge. Discharge and load are in strong relationship. And based on regression equation, pollutant loads from groundwater irrigation area are estimated to be 288.34, 1.17, and 5.45 kg/ha for CO $D_{cr}$ , T-P, and T-N, respectively, which was relatively lower than the literature value from surface water irrigation area which implies that groundwater irrigation area might use less irrigation water and result in less drainage water, Therefore, total pollutant load from paddies irrigation with groundwater could be significantly lower than that with surface water. This study shows that agricultural drainage water management needs a good care of drainage outlet as well as rainfall runoff. This study was based on limited monitoring data of one year, and further monitoring and successive analysis are recommended for more generalized conclusion.

Response of Nutrient Dynamics with Topography during the Rice Cultivation in Paddy Field

  • Kim, Min Kyeong;Choi, Soon Kun;Kim, Myung Hyun;Hong, Seong Chang;Park, Na Young;Hur, Seung Oh;So, Kyu Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.310-317
    • /
    • 2016
  • This study aimed to evaluate the nutrient load balance from rice paddy fields with different topographies, alluvial plain and local valley. Continuous monitoring from May to September, 2013 was conducted for water quantification and qualification from alluvial plain in Yeoju region (32 ha) and local valley in Jincheon region (24 ha). The discharge rates of T-N from the alluvial plain were 57.2, 5.84, 22.7, and $5.20kg\;ha^{-1}$ for irrigation, precipitation, drainage, and percolation, respectively. In case of local valley, T-N loads were 34.6, 4.73, 21.1, and $4.15kg\;ha^{-1}$ for irrigation, precipitation, drainage, and percolation, respectively. In contrary, the T-P loads from the alluvial plain were 2.23, 2.22, 2.54, and $0.41kg\;ha^{-1}$ for irrigation, precipitation, drainage, and percolation, respectively. In case of local valley, T-P loads were 1.44, 1.57, 1.82, and $0.34kg\;ha^{-1}$ for irrigation, precipitation, drainage, and percolation, respectively. The nutrient contents in drainage water were influenced by the amount of waters, rainfall, and surface drainage water. The Pearson correlation analysis showed that rainfall was significantly correlated with nutrient loads from July to August due to the amount of runoff in local valley paddy field, and irrigation was related with nutrient loads of drainage from July to August. This study showed that paddy rice farming in alluvial plain and local valley might be beneficial to water quality protection.

Water saving irrigation method in paddy fields (용수절약형 논관개 기법(관개배수 \circled1))

  • 정상옥;안태홍
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.108-113
    • /
    • 2000
  • A field study was performed to investigate the effect of water saving irrigation method on water use efficiency and rice yield. The field plot was 40a (40 ${\times}$ 100m) in size and located at Buryangmyun, Kimjae city, Chonbuk province. Field measurements were made during the growing seasons, May to September of the year 1998 and 1990. Irrigation water volume, drainage water volume, rainfall and ponding depth were measured. Irrigation water management practice employed was such that to keep the ponding depth about 3 to 4cm by intermittent irrigation with drying the soil surface until hair cracks emerge before the next irrigation. The amounts of water volume irrigated and drained were measured by pipe flow meter and ponding depth was observed by using a partly buried 120mm diameter PVC pipe. The results showed that the irrigation water depths, the rainfalls, and the drainage depths were 379mm, 458mm, and 448mm in 1988, and 274mm, 819mm, and 736mm in 1990, respectively. The average yield was 590kg per 10a. The water saving irrigation method saved irrigation water by about 20% with higher yield compared with the traditional method.

  • PDF

Return Flow Rate Estimation of Irrigation for Paddy Culture in Chuncheon Region of the North Han River Basin (북한강 유역 춘천지역의 논 농업용수 회귀율 산정)

  • Choi Joong-Dae;Choi Ye-Hwan
    • KCID journal
    • /
    • v.9 no.2
    • /
    • pp.68-77
    • /
    • 2002
  • Return flow rate of agricultural irrigation for rice culture was investigated in the North Han river basin, Two small paddy watersheds were chosen and irrigation, drainage, infiltration and evapotranspiration were monitored and estimated during the irriga

  • PDF

Influence of Irrigation Times, Soil Treatment and Drainage in Indoor on the Growth Response of Cyrtomium falcatum Ferns Korea Native (실내에서 관수주기, 토양처리, 배수층이 자생 도깨비고비의 생육에 미치는 영향)

  • Ju, Jin Hee;Bang, Kwang Ja
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.1
    • /
    • pp.73-78
    • /
    • 2005
  • It was aimed to promote Cyrtomium falcatum as a material for interior landscape by validating it indoor adaptability in the indoor environment, especially irrigation times, soil treatment and drainage level. Irrigation times were 2 times per week and 7 times per week. Soil treatment and drainage level were carried out drainage-peatmoss : vermiculite : perlite=1 : 1 : 1(D-PVP), peatmoss : vermiculite : perlite=1 : 1 : 1(PVP), drainage-saprolite : leaf mold=1 : 1(D-SL) and saprolite : leaf mold=1 : 1(SL). 1. Top of growth was better with irrigation 7 times per week than irrigation 2 times per week but indoor adaptability was decreased and shown yellowish green. 2. In case of soil treatment, growth was better with saprolite : leaf mold=1 : 1 but indoor growth adaptability was decreased than peatmoss : vermiculite : perlite=1 : 1 : 1. 3. Plant height and blade length were increased under non-drainage treatment but indoor adaptability, number of new fronds and number of sporophyll were decreased under drainage treatment, regardless of irrigation times and soil treatment. 4. Photosynthetic rate(Pn) was the highest in the drainage-peatmoss : vermiculite : perlite=1 : 1 : 1 treatment of irrigation 2 times per week and was the lowest in the saprolite : leaf mold=1 : 1 treatment of irrigation 7 times per week.

The Role of Massive Shaking Irrigation and Abdominal Drainage After Laparoscopic Appendectomy for Panperitonitis Secondary to Perforated Appendicitis in Children (소아의 범발성 복막염을 동반한 천공성 충수염에서 복강경하 충수절제술 후 대량 흔들기 세척법 및 배액술의 역할)

  • Kim, Woo-Yeon;Chung, Jae-Hee
    • Advances in pediatric surgery
    • /
    • v.17 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • Use of laparoscopic appendectomy (LA) for perforated appendicitis (PA) in children remains controversial because of the development of postoperative intra-abdominal abscess formation. We developed the irrigation method for the prevention of abscess formation after LA performed for PA in children with severe panperitonitis. We called it 'the shaking irrigation'. The object of this study was to analyze the efficacy of this irrigation method. All cases of PA with severe panperitonitis in children that underwent LA with massive shaking irrigation and drainage between June 2003 and December 2007 were studied retrospectively. We included only PA with panperitonitis and large amounts of purulent ascites throughout the abdomen as well as an inflamed small bowel with ileus. Thirty-four children were involved in this study. The mean patient age was eight years. The mean amount of irrigation fluid was 8.2 L (range: 4-15 L), The mean operative time was 89.5 min. The mean length of the hospital stay was 5.1 days. There were no postoperative intra-abdominal abscesses. There was no conversion to open surgery. In conclusion, Use of LA in PA with severe panperitonitis in children is safe and effective. Massive shaking irrigation and abdominal drainage appears to prevent intra-abdominal abscesses after LA for PA with panperitonitis.

  • PDF