• Title/Summary/Keyword: Irrigation Area

Search Result 597, Processing Time 0.029 seconds

Simulation of Wheat Yield under Changing Climate in Pakistan (파키스탄 기후변화에 따른 밀생산량 모의)

  • Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.199-199
    • /
    • 2017
  • Sustainable wheat production is of paramount importance for attaining/maintaining the food self-sufficiency status of the rapidly growing nation of Pakistan. However, the average wheat yield per unit area has been dwindling in recent years and the climate-induced variations in rainfall patterns and temperature regimes, during the wheat growth period, are believed to be the reason behind this decline. Crop growth simulation models are powerful tools capable of playing pivotal role in evaluating the climate change impacts on crop yield or productivity. This study was aimed to predict the plausible variations in the wheat yield for future climatic trends so that possible mitigation strategies could be explored. For this purpose, Aquacrop model v. 4.0 was employed to simulate the wheat yield under present and future climatology of the largest agricultural province of Punjab in Pakistan. The data related to crop phenology, management and yield were collected from the experimental plots to calibrate and validate the model. The future climate projections were statistically downscaled from five general circulation models (GCMs) and compared with the base line climate from 1980 to 2010. The model was fed with the projected climate to simulate the wheat yield based on the RCP (representative concentration pathways) 4.5 and 8.5. Under the worst, most likely future scenario of temperature rise and rainfall reduction, the crop yield decreased and water footprint, especially blue, increased, owing to the elevated irrigation demands due to accelerated evapotranspiration rates. The modeling results provided in this study are expected to provide a basic framework for devising policy responses to minimize the climate change impacts on wheat production in the area.

  • PDF

Retrospective study of osteoradionecrosis in the jaws of patients with head and neck cancer

  • Manzano, Brena Rodrigues;Santaella, Natalia Garcia;Oliveira, Marco Aurelio;Rubira, Cassia Maria Fischer;Santos, Paulo Sergio da Silva
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.45 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • Objectives: Osteoradionecrosis (ORN) is one of the most severe complications resulting from radiotherapy (RT) in patients with head and neck cancer (HNC). It is characterized by persistent exposed and devitalized bone without proper healing for greater than 6 months after a high dose of radiation in the area. To describe the profile and dental management of ORN in HNC patients undergoing RT in an oncological clinical research center. Materials and Methods: A retrospective descriptive study was performed to analyze dental records from HNC patients with ORN treated at an oncological clinical research center from 2013 to 2017. A total of 158 dental records for HNC patients were selected from a total of 583 records. Afterwards, this number was distributed to three examiners for manual assessments. Each examiner was responsible for selecting dental records that contained an ORN description, resulting in 20 dental records. Results: Mean patient age was 60.3 years with males being the most affected sex (80.0%). The most affected area was the posterior region of the mandible (60.0%) followed by the anterior region of the mandible (20.0%) and the posterior region of the maxilla (10.0%). The factors most associated with ORN were dental conditions (70.0%) followed by isolated systemic factors (10.0%) and tumor resection (5.0%). There was total exposed bone closure in 50.0% of cases. The predominant treatment was curettage associated with chlorhexidine 0.12% irrigation (36.0%). Conclusion: Poor dental conditions were related to ORN occurrence. ORN management through less invasive therapies was effective for the closure of exposed bone areas and avoidance of infection.

Groundwater use management using existing wells to cope with drought

  • Amos, Agossou;Yang, Jeong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.450-450
    • /
    • 2022
  • The study aims to develop scenarios for efficient groundwater use using existing wells in order to prepare for an eventual drought. In the recent decades, droughts are not only intensifying, but they are also spreading into territories where droughts used to be less intense and relatively infrequent. With the increasing disaster, efficient groundwater use is urgently needed not only to prevent the problem of groundwater depletion but also drought risk reduction. Thus, the research addressed the problem of efficient aquifer use as source of water during drought and emergencies. The research focused on well network system applied to Yanggok-ri in Korea using simulation models in visual MODFLOW. The approach consists to variate groundwater pumping rate in the most important wells used for irrigation across the study area and evaluate the pumping effect on water level fluctuation. From the evaluation, the pumping period, appropriate pumping rate of each well and the most vulnerable wells are determined for a better groundwater management. The project results divide the study area into two different regions (A and B), where the wells in the region A (western part of the region) show a crucial drop in water level from May to early July and in august as consequence of water pumping. While wells in region B are also showing a drawdown in groundwater level but relatively less compare to region A. The project suggests a scenarios of wells which should operate considering water demand, groundwater level depletion and daily pumping rate. Well Network System in relevant project, by pumping in another well where water is more abundant and keep the fixed storage in region A, is a measure to improve preparedness to reduce eventual disaster. The improving preparedness measure from the project, indicates its implication to better groundwater management.

  • PDF

QTL analysis of agronomic traits in recombinant inbred lines of sunflower under partial irrigation

  • Haddadi, P.;Yazdi-Samadi, B.;Naghavi, M.R.;Kalantari, A.;Maury, P.;Sarrafi, A.
    • Plant Biotechnology Reports
    • /
    • v.5 no.2
    • /
    • pp.135-146
    • /
    • 2011
  • The objective of the present research was to map QTLs associated with agronomic traits such as days from sowing to flowering, plant height, yield and leaf-related traits in a population of recombinant inbred lines (RILs) of sunflower (Helianthus annuus). Two field experiments were conducted with well-irrigated and partially irrigated conditions in randomized complete block design with three replications. A map with 304 AFLP and 191 SSR markers with a mean density of 1 marker per 3.7 cM was used to identify QTLs related to the studied traits. The difference among RILs was significant for all studied traits in both conditions. Three to seven QTLs were found for each studied trait in both conditions. The percentage of phenotypic variance ($R^2$) explained by QTLs ranged from 4 to 49%. Three to six QTLs were found for each yield-related trait in both conditions. The most important QTL for grain yield per plant on linkage group 13 (GYP-P-13-1) under partial-irrigated condition controls 49% of phenotypic variance ($R^2$). The most important QTL for 1,000-grain weight (TGW-P-11-1) was identified on linkage group 11. Favorable alleles for this QTL come from RHA266. The major QTL for days from sowing to flowering (DSF-P-14-1) were observed on linkage group 14 and explained 38% of the phenotypic variance. The positive alleles for this QTL come from RHA266. The major QTL for HD (HD-P-13-1) was also identified on linkage group 13 and explained 37% of the phenotypic variance. Both parents (PAC2 and RHA266) contributed to QTLs controlling leaf-related traits in both conditions. Common QTL for leaf area at flowering (LAF-P-12-1, LAF-W-12-1) was detected in linkage group 12. The results emphasise the importance of the role of linkage groups 2, 10 and 13 for studied traits. Genomic regions on the linkage groups 9 and 12 are specific for QTLs of leaf-related traits in sunflower.

A Study on the Landscape Change in Nakdong River Delta The Case of Myeongjidong (낙동강 삼각주의 경관변화에 관한 연구 -명지동을 사례로-)

  • Heo, Minseok;SON, ILL;Tak, Hanmyeong
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.4
    • /
    • pp.491-508
    • /
    • 2016
  • This study has taken the Myeongjidong island, which has experienced spatial change due to various reasons ranging from the Japanese colonial era until today, as an instance in order to comprehend macroscopic spatial change of the Nakdonggang Delta and the adaptation process of the locals in a microscopic point of view. Spatial change of the Myeongjidong has been confirmed by collecting maps such as the atlas of late period of Chosun published in 1910, topographic map, regional geography, city records, and by applying coordinates with geographic reference function of GIS program, then checking for time sequential space change of individual regions. Space change driven by the Japanese government-general of Korea, Gimhae Irrigation Association, and by national policy or planning brought about environmental and humanistic changes unlike ever before, and land usage, housing and industry of the region and the locals experienced various adaptation processes. Such processes were compiled through collection and comparison of literature, and supplementation from interview of the locals during field study. As for the research region, it ranged from the construction of Nakdonggang bank and Myeongji seawall of 1935, agricultural rural landscape formed after the area expansion project by Gimhae Irrigation Association in 1940, to landscape that are becoming mercantile and urban due to the developmental plans of national and local governments.

  • PDF

A Study of the Management of Groundwater Reservoir by Numerical Three Dimensional Flow Model (3차원 흐름모델을 이용한 지하저수지의 관리에 대한 연구)

  • 신방웅;김희성
    • The Journal of Engineering Geology
    • /
    • v.5 no.3
    • /
    • pp.289-300
    • /
    • 1995
  • At the initial stage of the underground reservoir design one should thoroughly consider surface and subsurface hydrology, hydrogeologic characteristics of aquifer system, and the function of cut - off wall because it is linked to the effective management. In this study, three dimensional finite difference model was applied to analyse the function of Ian underground reservoir at Kyungbuk Province. The steady and unsteady state conditions after construction of the underground dam were simulated through the model, and from these results the groundwater budget and the safe yield were determined. The model simulation indicates the infiltration of irrigation water to be one of the major factors of seasonal fluctuation of groundwater level. The recharge rates of irrigation water were estimated as 4.3mm/d during May and June, and 1.7mm/d during July and Agust. Groundwater recharge from the watershed area estimated to about $0.04m^3/s$, almost consistent through the year. In 1984, groundwater discharge through the transverse section of the dam was $0.002m^3/s$ and the optimum yield for two momths(July and Aguest)was $254000m^3$, however, the discharge became $0.013m^3/s$ in1993, implying the failure of cut -off function. without appropaiate of the cut - off wall, optiumum yield during the irrigaton period would be $93, 000m^3$.

  • PDF

Analysis of Relationship Between Water Quality Parameters in Agricultural Irrigation Reservoirs and Land Uses of Associated Watersheds (농업용저수지 유역의 토지이용과 수질항목 간의 상관관계 분석)

  • Yoon, Chun-Gyeong;Lee, Sae-Bom;Jung, Kwang-Wook;Han, Jung-Yoon
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.31-39
    • /
    • 2007
  • Monitoring data of 48 agricultural irrigation reservoirs from 1999 to 2004 was analyzed for water quality characteristics including biochemical oxygen demand $(BOD_5)$, chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), and chl-${\alpha}$. Land uses of the watersheds associated with these reservoirs were determined for residential, forest, upland, paddy and miscellaneous, and regressed against water quality characteristics. Correlation analysis showed that forest land use was negatively correlated with all the water quality characteristics implying it's beneficial effects in water quality perspectives. Other land uses including residential, upland, and paddy generally illustrated positive correlation with water quality characteristics, which indicates most human activities of the watershed could degrade water quality of the receiving water bodies. Paddy land use partially contributed to the water quality degradation in contrast to the previous studies. It might be attributed to the relatively clean water quality of the study area, where even slight pollutant loading could degrade sensitively water quality. Further investigation is recommended for the effect of proximity as well as land use portions on the water quality of receiving water body.

Long-term Runoff Simulation Considering Water for Agricultural Use in Geum River Basin (농업용수 이용량을 고려한 금강유역 장기유출모의)

  • Woo, Dong-Hyeon;Lee, Sang-Jin;Kim, Joo-Cheol;An, Jung-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.349-355
    • /
    • 2010
  • This study aims at the augmentation of reliability of the long-term rainfall runoff model. To do so agricultural water uses are evaluated by analyzing the effects of small scale irrigational hydraulic structures on long term runoff processes and thereby rainfall-runoff model is modified considering them. As a result the simulation results of the sub-basins having more agricultural reservoirs than the others are disagreed with the observations. The 2nd quarter simulation results show similar trend to it. Especially the farming seasonal results of the drought year as the year of 2008 have many negative discharge values due to the lack of agricultural water uses. This result come from the water uses input data corresponding to not real water uses but water demands. In this study the formulas are derived to estimate the discharges and return ratios and the long term rainfall-runoff model is reformulated based on these. It is confirmed that the errors of the simulation results could be reduced by considering the effects of small scale irrigational hydraulic structures and the reliability of the simulation results improved greatly.

Nitrogen Split Application of Direct-seeded Rice in Tillage and No-tillage Systems (경운과 무경운 조건에서 벼 건답휴립직파재배의 질소분시비율)

  • 이석순;홍승범;백준호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.5
    • /
    • pp.405-412
    • /
    • 1992
  • Growth characters of dry seeded paddy rice was studied at different levels of nitrogen(N) split application (basal : immediately after irrigation : 2 weeks after irrigation: 25 days before heading: heading stage with 10 : 20 : 30 : 20 : 20%, 20 : 30 : 20 : 20 : 10%, 30 : 40 : 0 : 20 : 10%, and 100% basal of slow release urea) in tillage and no-tillage systems. On May 17 in 1990, 6kg /10a of dry seeds of a breeding line of Milyang 95 was broadcasted and covered with a power tiller. Between tillage and no-tillage systems yield and its components, lodging related characteristics, and contents of cellulose, hemicellulose and lignin of culm base were similar. Leaf area index at heading stage was higher in tillage, but lodging index was lower compared with those in no-tillage plot. Culm length, effective tiller ratio, culm base weight, 1000-grain weight, harvest index in slow release N applied plot were higher compared with those in other N treatments. Grain yield of rice among levels of N split applications was similar in tillage, but it was higher in slow release N applied plot in no-tillage if 1kg /10a of additional N was applied as urea at panicle formation stage. At early growth stage N concentration and N uptake were lower in the slow release N applied plot, but higher after heading stage compared with other N treatments. The number of tillers was lowest in slow release N applied plot during the tillering stage, but the number of panicles per hill was similar to other N treatments.

  • PDF

Factor Analyses for Water Quality Indicators of Streams, Ground Water, and Reservoir in Agricultural Small Catchments of the Han River Basin

  • Park, C-S;Joo, J-H;Jung, Y-S;Yang, J-E
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.382-393
    • /
    • 2000
  • The principal indicators contributing to water qualities was screened by factor analyses, based on the monitored chemical parameters of water quality for various water resources from 1995 to 1999 in the small agricultural catchments of the Han River Basin. Water samples of streams, groundwaters, and reservoirs were taken four times a year from upper (Daegwanryong), middle (Dunnae and Chunchon) and lower (Guri) reaches of Han River Basin. In these areas, the respective type of farming practiced was alpine agriculture and livestocks raising, typical upland and paddy cultivation, and intensive cropping in the plastic film house. Water quality was monitored for twenty-one water quality parameters, including pH, EC, SS, T-N, T-P, COD, cations, anions, and heavy metals. pH, EC and COD of the stream waters were suitable for the Korea irrigation water quality guidelines. However, T-N and T-P concentrations of water samples in four catchments far exceeded the irrigation water guideline. Concentrations of canons and heavy metals in Wangsuk stream in Guri area were higher than those in streams in other areas. Factor analysis revealed that significant correlation was observed for 81 pairs out of 231 water quality indicators of stream water among the $21\;{\times}\;21$ cross correlation matrix of stream water quality indicators. The first factor accounted for 27.01% of the total variation in stream water quality indicators, and high positive factor loadings were shown on EC, K, Na, $NH_4\;^+-N$, $PO_4\;^{3-}$, $SO_4\;^{2-}$, and COD. Fifty-three water quality indicator pairs were significant out of 190 ground water quality parameters. The first factor accounted for 28.54% of the total variation in ground water quality indicators, and high loadings were revealed on EC, Ca, Mg, K, Na, $NH_4\;^+-N$, and $SO_4$. Twenty-nine pairs of reservoir water quality indicators were significant out of 66 pairs. The first factor accounted for 37.06% of the total variation in reservoir water quality indicators, and high loadings were shown on EC, Mg, K, Na, SS, T-P, Cl, and COD. These results demonstrate that EC was the first factor contributing to water quality.

  • PDF