• Title/Summary/Keyword: Irregular sea

Search Result 196, Processing Time 0.029 seconds

A Numerical Model of Irregular Wave Diffraction around a Thin Semi-Infinite Breakwater (반무한 방파제 주위에서의 불규칙파 회절에 대한 수치모형)

  • 정신택;채장원;강관수;전인식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.1
    • /
    • pp.45-50
    • /
    • 1993
  • The phenomenon of wave diffraction due to structure is an important factor in the wave climate at the site As an approximation, the propagation characteristics of a regular wave train are usually used. instead of those of irregular waves. However, there are great differences between the diffraction coefficients of the irregular waves and monochromatic waves, as shown by Goda (1985). The spectral calculation method. one of the methods to deal with the transformation of random sea waves essentially consists of decomposing a spectrum of the irregular sea state Into various monochromatic components, and assembling the component results by linear superposition. Monoch romatic wave transformation model developed by Chen(1987) is used to make spectral calculation. These calculations agree closely with Goda et al. (1978)'s diffraction diagram for a thin semi-infinite breakwater.

  • PDF

Performance of integrated vertical raft-type WEC and floating breakwater

  • Tay, Zhi Yung;Lee, Luke
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.39-61
    • /
    • 2022
  • Renewable energy such as wave energy has gained popularity as a means of reducing greenhouse gases. However, the high cost and lack of available sea space in some countries have hindered the deployment of wave energy converters (WEC) as alternative means of sustainable energy production. By combining WECs with infrastructures such as floating breakwaters or piers, the idea of electricity generated from WECs will be more appealing. This paper considers the integration of vertical raft-type WEC (commonly known as the vertical flap WEC) with floating breakwater as means to generate electricity and attenuate wave force in the tropical sea. An array of 25 WECs attached to a floating breakwater is considered where their performance and effect on the wave climate are presented. The effects of varying dimensions of the WEC and mooring system of the floating breakwater have on the energy generation are investigated. The integrated WECs and floating breakwater is subjected to both the regular and irregular waves in the tropical sea to assess the performance of the system. The result shows that the integrated vertical flap-floating breakwater system can generate a substantial amount of wave energy and at the same time attenuate the wave force effectively for the tropical sea when optimal dimensions of the WECs are used.

Evaluation of the Ship′s Navigational Safety Using Dangerousness on the Korean Coast (연안 여객선의 내항성능 위험도를 이용한 항해 안전성 평가에 관한 연구)

  • 김철승;정창현;김순갑;공길영;설동일;이윤석
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.9 no.1
    • /
    • pp.41-50
    • /
    • 2003
  • There are winds and waves in the sea, and they are changed frequently in accordance with the weather. By analyzing then which have the closest relation to the ship's safe voyage, evaluating the seakeeping performance and then taking a proper act on, navigators should carry out safe navigation on the sea A ship in seaways suffers continuous disturbances by irregular waves, and ship motions with irregular waves cannot be easily described as a system model which is adequate to a control system. But, in general, for seakeeping analysis, ship motions in irregular seas can be estimated by the superposition of the motion responses in regular wave components of the sea spectrum. After comparing and analyzing the winds and waves in major sea areas, this paper evaluates the navigational safety of ships on the Korean coast with potential dangerous seakeeping performance using the weather information provided by land The conclusion is as follows: (1) It is possible that the safety of ships could be secured more accurately by evaluating the seakeeping performance of ships. (2) When the weather is bad, the departure of ships could be controlled by evaluating the navigational safety of ships. (3) When a ship is placed in commission in any area, this evaluation could be used to decide the type and size of ship in use.

  • PDF

A study on evaluation of ship motion in irregular waves (불규칙 파랑 중 선체 동요 평가에 관한 연구)

  • LEE, Chang-Heon;CHOI, Chan-Moon;AHN, Jang-Young;KIM, Seok-Jong;KIM, Byung-Yeob;SHIGEHIRO, Ritsuo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.4
    • /
    • pp.504-511
    • /
    • 2015
  • In this paper, the results of evaluating the passenger comfort due to the standard deviation of acceleration in vertical and lateral direction regarding the ship response in irregular wave by ordinary strip method in regular wave and energy spectrum using linear superposition theory in order to evaluate the motion of experimental ship are as follows. According to the results of ship response, it was possible to find that, in order to reduce the motion of ship, a ship operating in bow sea was more stable than in quartering sea. In the results of analyzing the standard deviation of acceleration in vertical direction according to each component wave pattern, when there was a wave length of 56m and an average wave period of 6 sec, most of cases showed the peak value. And among them, the standard deviation was 0.35 which was the highest in head sea. And in case of lateral direction, the maximum value was shown in a wave length of 100m and an average wave period of 8 sec. And it was 0.16 in beam sea and ${\chi}=150^{\circ}$. In the evaluation of passenger comfort due to standard acceleration in vertical and lateral direction, it was 80% in head and bow sea. On the other hand, it was shown to be 15% in follow sea. Accordingly, when the expected wave height in a sea area where a training ship was intended to operate was known, it was possible to predict the routing of ship. And altering her course could reduce the passenger comfort by approximately 50%.

Analytical Research of Topside Installation in Mating phase with Crane Vessel

  • Lee, Jong-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.1-6
    • /
    • 2011
  • The installation of a topside structure can be categorized into the following stages: start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the module onto the floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with a significant wave height (1.52m). The effects of the hydrodynamic interactions between the heavy lifting vessel and the spar hull during the lowering and mating stages are considered. The internal forces caused by the load transfer and ballasting are derived for the mating phases. The results of the internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of the pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the mating phases, the internal force induced pitch motion is too small to have this influence. However, the effect of the internal force on the wave-induced heave responses in the mating phases is noticeable in the irregular sea condition because transfer mass-induced draught changes for the floating structure are observed to have higher amplitudes than the external force induced responses. The impacts of the module on the spar hull in the mating phase are investigated.

Dynamic Analysis of Topside Module in Lifting Installation Phase

  • Lee, Jong-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.7-11
    • /
    • 2011
  • The installation phase for a topside module suggested can be divided into 9 stages, which include start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the topside module from a transport barge to a crane vessel takes place in the first three stages, from start to lifting, while the transfer of the module onto a floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with significant wave height (1.52m), with suggested force equilibrium diagrams. The effects of the hydrodynamic interactions between the crane vessel and barge during the lifting stage have been considered. The internal forces caused by the load transfer and ballasting are derived for the lifting phases. The results of these internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the lifting phases, the internal force induced pitch motion is too small to show its influence. However, the effect of the internal force on the wave-induced heave responses in the lifting phases is noticeable in the irregular sea condition because the transfer mass-induced draught changes in the floating structure are observed to have higher amplitudes than the external force induced responses.

A comprehensive study on ship motion and load responses in short-crested irregular waves

  • Jiao, Jialong;Chen, Chaohe;Ren, Huilong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.364-379
    • /
    • 2019
  • Wave-induced ship motion and load responses are usually investigated on the assumption that the incident waves are long-crested. The realistic sea waves are however short-crested irregular waves. Real practice reveals that the ship motion and load responses induced by short-crested waves are different from those induced by long-crested waves. This paper aims to conduct a comprehensive study on ship motions and loads in different wave fields. For this purpose, comparative studies by small-scale model towing tank test and large-scale model sea trial are conducted to experimentally identify the difference between ship motions and loads in long-crested and short-crested irregular waves. Moreover, the influences of directional spreading function of short-crested waves on ship motions and loads are analyzed by numerical seakeeping calculation. The results and conclusions obtained from this study are of great significance for the further extrapolation and estimation of ship motions and loads in short-crested waves based on long-crested wave response results.

Time Domain Analysis of a Tension Leg Platform in Multi-Directional Irregular Waves (다방향 불규칙파중의 인장계류식 해양구조물의 시간영역 해석)

  • Lee, Chang-Ho;Kim, Chuel-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.36-41
    • /
    • 2006
  • The main object of this study is to develop an accurate and convenient method for the response analysis of offshore structures in real sea states. A numerical procedure is described for predicting the motion responses and tension variations of the ISSC TLP in multi-directional irregular waves. The developed numerical approach in the frequency domain is based on acombination of the three dimensional source distribution method, the dynamic response analysis method, and the spectral analysis method. Frequency domain analysis in the multi-directional irregular waves is expanded to a time domain analysis by using a convolution integral after obtaining the impulse response by Fourier transformation. The results of the comparison between responses in the frequency and time domain confirmed the validity of the proposed approach.

Analysis on the Characteristics of the Irregular Wave Group (불규칙 파군의 특성해석)

  • 이철응;이길성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.4
    • /
    • pp.395-405
    • /
    • 1993
  • Wave grouping, which is one of the important characteristics of the irregular wave, is analyzed by the run-length theory and the SIWEH(Smoothed Instantaneous Wave Energy History) theory. After studying the basic properties of the regular wave group synthesized using the harmonic waves. the characteristics of the irregular wave group observed at the East sea is analyzed. It is concluded that for accurate analysis of irregular wave grouping concepts of run length and SIWEH as well as spectrum analysis should In examined.

  • PDF

Search of submarine discharge locations with multi-temporal thermal infrared images and ground radar surveys

  • Onishi K.;Sairaiji M.;Rokugawa S.;Tokunaga T.;Sakuno Y.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.685-688
    • /
    • 2004
  • Fresh water discharge from the sea floor strongly affects a coastal ecology and the diffusion of contaminants. Much fresh water discharge has been found in the edge of Kurobe alluvial fan, in which annual rainfall is over 4000mm and there is abundant groundwater. However, it is difficult to find the groundwater discharge, thus the search of possible areas with some remote sensing tools is required. Because the temperature of the discharge point is relatively low compared with the surrounding sea water surfaces, there is a possibility to detect the area as an irregular zone of thermal infrared images. Two anomalous temperature zones, which have no surface streams from rivers, are detected by ASTER thermal-infrared images. One of them was verified as the groundwater discharge point by dives. In addition, the distribution of water table under the land side of the two areas is also detected as irregular zones by a ground-penetrating radar

  • PDF