• 제목/요약/키워드: Irreducible trinomial

검색결과 13건 처리시간 0.016초

삼항 기약다항식을 이용한 GF($2^n$)의 효율적인 저면적 비트-병렬 곱셈기 (Low Space Complexity Bit Parallel Multiplier For Irreducible Trinomial over GF($2^n$))

  • 조영인;장남수;김창한;홍석희
    • 대한전자공학회논문지SD
    • /
    • 제45권12호
    • /
    • pp.29-40
    • /
    • 2008
  • 유한체 GF($2^n$) 연산을 바탕으로 구성되는 암호시스템에서 유한체 곱셈의 효율적인 하드웨어 설계는 매우 중요한 연구분야이다. 본 논문에서는 공간 복잡도가 낮은 병렬 처리 유한체 곱셈기를 구성하기 위하여 삼항 기약다항식(Trinomial) $f(x)=x^n+x^k+1$의 모듈러 감산 연산 특징을 이용하였다. 또한 연산 수행 속도를 빠르게 개선하기 위해 하드웨어 구조를 기존의 Mastrovito 곱셈 방법과 유사하게 구성한다. 제안하는 곱셈기는 $n^2-k^2$ 개의 AND 게이트와 $n^2-k^2+2k-2$개의 XOR 게이트로 구성되므로 이는 기존의 $n^2$ AND게이트, $n^2-1$ XOR 게이트의 합 $2n^2-1$에서 $2k^2-2k+1$ 만큼의 공간 복잡도가 감소된 결과이다. 시간 복잡도는 기존의 $T_A+(1+{\lceil}{\log}_2(2n-k-1){\rceil})T_X$와 같거나 $1T_X$ 큰 값을 갖는다. 최고차 항이 100에서 1000 사이의 모든 기약다항식에 대해 시간복잡도는 같거나 $1T_X(10%{\sim}12.5%$)정도 증가하는데 비해 공간 복잡도는 최대 25% 까지 감소한다.

페어링 암호 연산을 위한 $F_{3^m}$에서의 효율적인 세제곱근 연산 방법 (Efficient Formulas for Cube roots in $F_{3^m}$ for Pairing Cryptography)

  • 조영인;장남수;김창한;박영호;홍석희
    • 정보보호학회논문지
    • /
    • 제21권2호
    • /
    • pp.3-11
    • /
    • 2011
  • $F_{3^m}$에서의 Tate 페어링 또는 ${\eta}_T$ 페어링 알고리즘 계산을 위하여 효율적인 세제곱근 계산은 매우 중요하다. $x^{1/3}$의 다항식 표현 중 0이 아닌 계수들의 개수를 $x^{1/3}$의 헤밍웨이트라 할 때, 이 헤밍웨이트가 세제곱근 연산의 효율성을 결정하게 된다. O. Ahmadi 등은 $f(x)=x^m+ax^k+b$ (a, $b{\in}F_3$)가 $F_3[x]$의 삼항 기약다항식이라 할 때, $F_{3^m}=F_3[x]/(f)$을 생성하는 모든 삼항 기약다항식에 대하여 $x^{1/3}$의 헤밍웨이트를 계산하였다. 본 논문에서는 Shifted Polynomial Basis(SPB)가 기존의 결과보다 $x^{1/3}$의 헤밍웨이트를 낮출 수 있음을 보이며, 모듈로 감산 연산이 필요 없는 가장 적합한 SPB를 제공한다.

$GF(2^m)$에서 삼항 기약 다항식을 이용한 약한 쌍대 기저 기반의 효율적인 지수승기 (Efficient polynomial exponentiation in $GF(2^m)$with a trinomial using weakly dual basis)

  • 김희석;장남수;임종인;김창한
    • 대한전자공학회논문지SD
    • /
    • 제44권8호
    • /
    • pp.30-37
    • /
    • 2007
  • 유한체 $GF(2^m)$에서의 다항식의 지수승 연산은 암호학(Cryptography), DSP(digital signal processing), 에러 정정 코드에서 기본적인 연산으로 사용되어진다. 기존의 방법들은 지수승 연산을 병렬처리가 가능한 Right-to-Left 이진 방법으로 구성하여 연산시간을 줄이는 방법을 사용하였다. 본 논문에서는 기존의 다항식 기저에서 Right-to-Left 이진 방법으로 구성되었던 다항식의 지수승기를 약한 쌍대 기저 기반에서 삼항 기약다항식을 이용한 Left-to-Right 이진 형태로 구성한다. 제안하는 방법은 Left-to-Right는 고정된 다항식을 곱한다는 점에 착안, 사전계산을 이용하여 연산량을 감소시킨다. 본 논문에서 제안하는 방법은 제곱기(squarer)와 곱셈기(multiplier)를 모두 수행하는 시간이 기존 지수승기의 곱셈기의 연산 시간보다 같거나 작아 Left-to-Right 형태와 Right-to-Left 형태의 기존 지수승기보다 각각 기약 다항식이 $x^m+x+1$의 경우 약 17%, 10%, $x^m+x^k+1(1의 경우 약 21%, 9%, $x^m+x^{m/2}+1$의 경우 15%, 1%의 시간이 단축된다.