• Title/Summary/Keyword: Irradiation energy

Search Result 2,139, Processing Time 0.027 seconds

Physiological Responses of Rice by Acute and Chronic Gamma Irradiation (방사선 완·급조사에 따른 벼의 생리적 영향 평가)

  • Kim, Dong Sub;Song, Mira;Kim, Sun-Hee;Jang, Duk-Soo;Kang, Si-Yong;Kim, Jin-Baek;Kim, Sang Hoon;Ha, Bo-Keun
    • Journal of Radiation Industry
    • /
    • v.5 no.1
    • /
    • pp.55-62
    • /
    • 2011
  • We investigated the physiological responses by acute and chronic gamma-irradiation in rice. The rice, Oryza sativa L. cv Dongan, plants were irradiated with 100 and 400 Gy of gamma-rays for acute and chronic irradiation, and their morphological, chlorophyll content, MDA, proline and activities of antioxidant enzymes were examined. The plant height of chronic irradiation samples were decrease with increase of a does than the control, but the number of tiller and dry weight of shoot were increased 100 Gy. Carotenoid and chrolorphyll content were decreased of all irradiated plants than non-irradiated plants. But, MDA and proline content were increased in 400 Gy both acute and chronic gamma irradiation. And the activities of antioxidant enzymes were different as gamma-irradiation patterns.

Continuous Surface Treatment and Dyeability of PTT Film via $UV/O_3$ Irradiation (UV/Ozone 조사에 의한 PTT 필름의 연속식 표면처리와 염색성)

  • Jang Jinho;Park Dae Sun
    • Textile Coloration and Finishing
    • /
    • v.17 no.1
    • /
    • pp.7-13
    • /
    • 2005
  • Continuous and intense UV irradiation on PTT film using two types of UV bulbs at different irradiation power level was carried out to modify surface characteristics of the film including zeta potential, wettability, surface energy, and dyeability. ESCA analysis of the irradiated film showed higher O/C ratio than the untreated film indicating photooxidation of outer surface layer. ATR analysis showed that the ester bonds were broken and some new groups were produced such as carboxylic acid, phenolic hydroxy, and other esters, implying that ester bonds of PTT was responsible for the observed photooxidation effect. The surface of the treated PTT film became more hydrophilic and wettable to water, coupled with increased surface energy. Polar component of the surface energy increased and nonpolar component decreased with increasing irradiation energy. The treatment also decreased zeta potential of the modified surface and nanoscale roughness increased with increasing irradiation. The dyeability of the treated films to catonic dyes was significantly improved by electrostatic and polar interaction between dye molecules and the anionic film surface. The UV irradiation seems to be a viable polymer surface modification technology, which has advantages such as no vacuum requirement and continuous process unlike plasma treatment.

A Study on Relationship between Fuel Characteristics and Combustion Characteristics of Reformed Diesel Fuels by Ultrasonic Energy Irradiation (II) - Relationship between Chemical Structure and Cetane Number - (초음파 개질 경유의 연료특성과 연소특성의 상관관계에 관한 연구 (II) -화학구조와 세탄가의 상관성-)

  • 이병오;류정인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.64-71
    • /
    • 2003
  • In order to analyze the effect of the chemical structure and the cetane number of reformed diesel fuels by ultrasonic energy irradiation, proton nuclear magnetic resonance spectrometer$(^1H-NMR)$ was used. From the study, following conclusive remarks can be made. 1) Branch Index(BI), aromatics percentages, and alpha methyl radical$(H_{\alpha})$ of the reformed diesel fuels by ultrasonic energy irradiation decreased more than the conventional ones. 2) All the cetane numbers which were calculated from carbon type structure and hydrogen type distribution of the reformed diesel fuels increased more than the conventional ones. 3) It is more reasonable to predict cetane number equation from carbon type structure than from hydrogen type distribution. 4) BI, aromatics percentages, and $H_{\alpha}$ on both for conventional fuel and reformed diesel fuels by ultrasonic energy irradiation are inversely proportional to cetane number fur these fuels.

Synthesis of TiO2 nanoparticles induced by electron beam irradiation and their electrochemical performance as anode materials for Li-ion batteries

  • Ahn, Ja-Hwa;Eom, Ji-Yong;Kim, Jong-Huy;Kim, Hye Won;Lee, Byung Cheol;Kim, Sung-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.75-80
    • /
    • 2015
  • We introduce a new synthesis method to prepare small TiO2 nanoparticles with a narrow particle size distribution, which is achieved by electron beam (E-beam) irradiation. The effects of E-beam irradiation on the synthesis of TiO2 nanoparticles and the electrochemical performance of TiO2 nanoparticles as alternative anode materials for Li-ion batteries are investigated. The TiO2 nanoparticles induced by E-beam irradiation present better cycling performance and rate capability than the TiO2 nanoparticles synthesized by normal hydrolysis reaction. The better electrochemical performance is attributed to small particle size and narrow particle size distribution, resulting in the large surface area that provides innumerable reaction sites and short diffusion length for Li+ through TiO2 nanoparticles.

Underwater Laser Cutting of Thick Stainless Steel in Various Cutting Directions for Application to Nuclear Decommissioning

  • Shin, Jae Sung;Oh, Seong Y.;Park, Seung-Kyu;Kim, Taek-Soo;Park, Hyunmin;Lee, Jonghwan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.3
    • /
    • pp.279-287
    • /
    • 2021
  • For application in nuclear decommissioning, underwater laser cutting studies were conducted on thick stainless-steel plates for various cutting directions using a 6 kW fiber laser. For cutting along the horizontal direction with horizontal laser irradiation, the maximum cutting speed was 110 mm·min-1 for a 48 mm thick stainless-steel plate. For cutting along the vertical direction with horizontal laser irradiation, a maximum speed of 120 mm·min-1 was obtained for the same thickness, which confirmed that the cutting performance was similar but slightly better. Moreover, when cutting with vertically downward laser irradiation, the maximum cutting speed was 120 mm·min-1 for a plate of the same thickness. Thus, the cutting performance for vertical irradiation was nearly identical to that for horizontal irradiation. In conclusion, it was possible to cut thick stainless-steel plates regardless of the laser irradiation and cutting directions, although the assist gas rose up due to buoyancy. These observations are expected to benefit laser cutting procedures during the actual dismantling of nuclear facilities.

Beryllium oxide utilized in nuclear reactors: Part II, A systematic review of the neutron irradiation effects

  • Ming-dong Hou;Xiang-wen Zhou;Bing Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.408-420
    • /
    • 2023
  • Beryllium oxide (BeO) is being re-emphasized and utilized in Micro Modular Reactors (MMR) because of its prominent nuclear and high temperature properties in recent years. The implications of the research about effects of neutron irradiation on the microstructure and properties of BeO are significant. This article comprehensively reviews the effects of neutron irradiation on BeO and proposes the maximum permissible neutron doses at different temperatures for BeO without cracks in appearance according to the data in the previous literature. This maximum permissible neutron dose value has important reference significance for the experimental study of BeO. The effects of neutron irradiation on the thermal conductivity and flexural strength of BeO are also discussed. In addition, microstructure evolution of irradiated BeO during post-irradiation annealing is summarized. This review article has important implications for the application of BeO in MMR.

Differential Expression of C4H and F5H Genes in Rice (Oryza sativa L.) after Gamma-irradiation

  • Park, Young-Mi;Chae, Hyo-Seok;Chung, Byung-Yeoup;Kim, Jae-Sung;Kim, Jin-Hong;Wi, Seung-Gon;An, Byung-Chull;Cho, Jae-Young
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.2 s.62
    • /
    • pp.155-159
    • /
    • 2006
  • To reveal effects of gamma-irradiation with various doses on the expressions of C4H and F5H genes, the transcription levels of OsC4HL and OsF5HL were investigated in leaves and stems of two rice cultivars, Ilpoombyeo and IR-29, after the irradiation with 5, 10, 50, or 100 Gy for 4 h. In overall pattern of 24 h after the irradiation, the transcription levels of the two genes increased with the increasing doses of radiation in the leaves of both cultivars, except that of OsC4HL in IR-29. However, in the stems, the transcription level of OsF5HL increased in Ilpoombyeo and decreased in IR-29 dose-dependently, while that of OsC4HL decreased in Ilpoombyeo with the increasing doses of radiation and remained constant in IR-29. When the expressions of OsC4HL and OsF5HL were investigated in a time-course after the irradiation with 100 Gy, they reached their highest levels in the leaves of both cultivars 5 hand 72 h after the irradiation, respectively. Therefore, we suggest that the expressions of OsC4HL and OsF5HL, which involved in the same phenylpropanoid pathway, are differentially regulated during the post-irradiation period, showing different cultivar and tissue specificity. Furthermore, the dose dependency of the gene expressions is also discussed immediately after the irradiation.

Effects of Gamma Irradiation on Pigments of Beef (감마선 조사가 한우육의 색소에 미치는 영향)

  • Yook, Hong-Sun;Lee, Ju-Woon;Lee, Kyong-Haeng;Kim, Sung;Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1184-1188
    • /
    • 1998
  • Effects of gamma irradiation on pigments of beef was investigated by determination of the Hunter's color values and pigments such as myoglobin, metmyoglobin and oxymyoglobin after gamma irradiation up to 5 kGy in air or vacuum package for 7 days. 'L' and 'b' values increased but 'a' value decreased with the elapse of the storage period. But, 'L', 'a' and 'b' values of irradiated beef were lower than non-irradiated beef. Myoglobin decreased but oxymyoglobin and metmyoglobin increased with the elapse of the storage period. Myoglobin decreased but oxymyoglobin and metmyoglobin increased with gamma irradiation up to 5 kGy. In regard to packaging methods, vacuum package did not affect pigment of the beef as did air package.

  • PDF

Understanding Phytosanitary Irradiation Treatment of Pineapple Using Monte Carlo Simulation

  • Kim, Jongsoon;Kwon, Soon-Hong;Chung, Sung-Won;Kwon, Soon-Goo;Park, Jong-Min;Choi, Won-Sik
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.87-94
    • /
    • 2013
  • Purpose: Pineapple is now the third most important tropical fruit in world production after banana and citrus. Phytosanitary irradiation is recognized as a promising alternative treatment to chemical fumigation. However, most of the phytosanitary irradiation studies have dealt with physiochemical properties and its efficacy. Accurate dose calculation is crucial for ensuring proper process control in phytosanitary irradiation. The objective of this study was to optimize phytosanitary irradiation treatment of pineapple in various radiation sources using Monte Carlo simulation. Methods: 3-D geometry and component densities of the pineapple, extracted from CT scan data, were entered into a radiation transport Monte Carlo code (MCNP5) to obtain simulated dose distribution. Radiation energy used for simulation were 2 MeV (low-energy) and 10 MeV (high-energy) for electron beams, 1.25 MeV for gamma-rays, and 5 MeV for X-rays. Results: For low-energy electron beam simulation, electrons penetrated up to 0.75 cm from the pineapple skin, which is good for controlling insect eggs laid just below the fruit surface. For high-energy electron beam simulation, electrons penetrated up to 4.5 cm and the irradiation area occupied 60.2% of the whole area at single-side irradiation and 90.6% at double-side irradiation. For a single-side only gamma- and X-ray source simulation, the entire pineapple was irradiated and dose uniformity ratios (Dmax/Dmin) were 2.23 and 2.19, respectively. Even though both sources had all greater penetrating capability, the X-ray treatment is safer and the gamma-ray treatment is more widely used due to their availability. Conclusions: These results are invaluable for optimizing phytosanitary irradiation treatment planning of pineapple.

Irradiation Dependance of I-V Characteristics of Photovoltaic System (태양광 시스템에서 전압-전류 특성의 일사량 의존성)

  • Park, Se-Joon;Hwang, Jun-Won;Choi, Yong-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.521-525
    • /
    • 2009
  • Solar, as an ideal renewable energy, has inexhaustible, clean and safe characteristics. However, solar energy is an extreme intermittent and inconstant energy source. In order to improve the photovoltaic system efficiency and utilize the solar energy more fully, and the DC current vary with the irradiation, it is necessary to study the characteristics of photovoltaic I-V according to the external factors. This paper presents the analysis of characteristics of photovoltaic I-V according to the irradiation. The results show that the DC current of the photovoltaic system are increased along with the increasing values of irradiation.