• Title/Summary/Keyword: Irradiation Temperature

Search Result 1,196, Processing Time 0.034 seconds

Effects of X-ray Irradiation on the Survival Rate and Weight of the Rhinoceros Beetle Larvae (X선 이 장수풍뎅이 유충의 체중과 생존율에 미치는 영향)

  • Lee, Won-Jeong;Lim, Dong-Hwan;Park, Jeong-Soon;Sim, Yeung-Eun;Jeong, Yoo-Jin;Kim, Jeong Ho;Yoo, Se Jong
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.271-277
    • /
    • 2020
  • The Purpose of this study was to examine the survival rate and weight of rhinoceros beetle larvae by irradiating X-rays which are most commonly used in diagnosing and treating for diseases. Subjectts and Methods: In early April 2019, the rhinoceros beetle larvae 41 were classified into two groups as control group (11 larvae) and irradiated group (10 Gy, 20 Gy, 30 Gy, each 10 larvae). The irradiated group was exposed by 6 MV X-ray using linear accelerators (Clinac IS, VERIAN, USA) at the University Hospital in Daejeon (Source-surface distance 96 cm, field size 18 × 10 cm, dose rate 600 MU/min), after environmental adaptation for 3 days (temperature 20.6℃, humidity 64.3%). The survival rate and weight were measured weekly after irradiating X-ray. All statistical analyses were performed using the SPSS ver. 22.0 (Chicago, IL, USA). The weight was analysed by Independent T-test, by cross-sectional analysis for survival rates between control and X-ray irradiated groups. Also, the correlation between dose and weight was analyzed by Spearman test. In 3-week after irradiating X-ray, weight was significant difference between control group and irradiated group (10 Gy or 20 Gy, p < 0.05; and 30 Gy, p < 0.01) with increasing weight in all experimental groups. In 14-week, weight was increased in the control group, but decreased in irradiated group. weight was significant difference between control group and irradiated group. The survival rate in 3-week was decreased rapidly in all experimental group except 10 Gy, to 4-week in irradiated group. The control group had no change in survival rate 54.5% from 3-week to 14-week. From the 3-week, it showed lower survival rate with increasing radiation dose in irradiated group. In 19-week, survival rate of control group and 10 Gy was 45.4% and 30.0% respectively, all died in 20 Gy and 30 Gy. Weight was significantly negative correlated with radiation dose as longer time after irradiating X-ray. The weight and survival rate of rhino beetle larvae is affected by irradiating X-rays, weight and survival rate decreased more in higher dose.

Inhibitory Effect of Ophioglossum vulgatum on Free Radical and MMP Expression in UV-irradiated Human Dermal Fibroblasts (병이소초 추출물의 항산화 및 MMP 발현 저해 효과)

  • Kim, Jin-Hwa;Oh, Jung-Young;Lee, Geun-Soo;Zhang, Yong-He;Pyo, Hyeong-Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.4
    • /
    • pp.287-292
    • /
    • 2009
  • Human skin is constantly exposed to environmental irritants such as smoke, chemicals and ultraviolet (UV). Free radicals and reactive oxygen species (ROS) caused by these environmental irritants play critical roles in cellular damage. In this study, to investigate the skin cell protective effect of Ophioglossum vulgatum extract, we investigated its effects on intercellular antioxidative activity and UVA-induced MMP expression in human dermal fibroblasts (HDFs). The dried O. vulgatum was extracted in a mixture of ethanol and water (1 : 1) for 24 h at room temperature. The extract was filtered and concentrated in vacuo and lyophilized. For testing intracellular ROS scavenging activity the cultured HDFs were analyzed by increase in DCF fluorescence upon exposure to UVB $20\;mJ/cm^2$. After treatment of O. vulgatum extracts, intracellular ROS levels were measured by luminescence spectrophotometer. Enzyme linked immuno sorbent assay (ELISA), and RT-PCR techniques were used for evaluating the effects of O. vulgatumon on MMP protein and mRNA expression in UVA irradiated HDFs. O. vulgatum extract was found to have ROS scavenging activity with the $IC_{50}$ values of $18.2\;{\mu}g/mL$ against superoxide radicals in the xanthine/xanthine oxidase system. After treatment of O. vulgatum extracts, the oxidation of CM-DCFDA was inhibited effectively and O. vulgatum extracts showed a potent free radical scavenging activity by 30.4 % at $100\;{\mu}g/mL$ in UVB-irradiated HDFs. UVA induced MMP protein expression was reduced 37.7 % by treatment with O. vulgatum extract, and MMP-1 mRNA expression was reduced in a dose-dependent manner. Taken together, these results suggest that O. vulgatum extract prevents the skin cell damage induced by UV irradiation, and implies that O. vulgatum extract may be useful as a new ingredient for anti-aging cosmetics.

Determination of optimum gamma ray range for radiation mutagenesis and hormesis in quinoa (Chenopodium quinoa Willd.)

  • Park, Chan Young;Song, Seon Hwa;Sin, Jong Mu;Lee, Hyeon Young;Kim, Jin Baek;Shim, Sang In
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.240-240
    • /
    • 2017
  • Quinoa (Chenopodium quinoa Willd.) is one of the ancient crops cultivated in the Andes region at an altitude of 3,500-4000m in Chile and Bolivia from 5000 BC. It contains a large amount of protein, minerals and vitamins in comparison with other crops. The cultivation area has been increasing worldwide because of its excellent resistance to various abiotic stress such as salinity, drought and low temperature. ${\gamma}$-Ray radiation of high dose is often used as a tool to induce mutations in plant breeding, but it has a deleterious effect on organisms. However, the radiation may have a positive stimulatory effect of 'hormesis' in the low dose range. This experiment was carried out to investigate the optimum dose range for creating the quinoa genetic resources and to investigate the hormesis effect at low dose on the quinoa. This experiment was performed for 120 days from November, 2016 to February, 2017 in the greenhouse of Gyeongsang National University. ${\gamma}$-Ray radiation was irradiated to seeds at 0 Gy, 50 Gy, 100 Gy, 200 Gy, 300 Gy, 400 Gy, 600 Gy, 800 Gy and 1000 Gy for 8 hours. (50 Gy) using the low level radiation facility ($Co^{60}$) of Cooperative Research Institute of Radiation Research Institute, KAERI. Fifty seeds were placed on each petri dish lined with wet filter paper and germination rate was measured at a time interval of 2 hours for 40 hrs. The length of the root length was measured one week after germination. Each treatment was carried out in 3 replicates. The growth of seedlings were investigated for 10 days after transplanting of 30 day-old seedlings. The plant height, NDVI, SPAD, Fv/Fm, and panicle weight were measured. The germination rate was highest at 50Gy and 0Gy and the rate of seeds treated with 400Gy or higher rate decreased to 25% of the seeds treated with 50Gy. The emergence rate of seedling in pot experiment was higher at the dose of 200 Gy, 300 Gy and 400 Gy than at 0 and 50Gy. However, the rate was lower at strong radiation higher than 600Gy at which $1^{st}$ leaf was not expanded fully and dead due to extreme overgrowth at 44 days after treatment (DAT). The highest value of panicle weight was observed at 50Gy (6.15g) and 100Gy (5.57g). On the other hand, the weight at high irradiated dose of 300Gy and 400Gy was decreased by about 55% compared to low dose (50 Gy). NDVI measurement also showed the highest value at 50 Gy as the growth progressed. SPAD was the highest at 400 Gy and showed positive correlation with irradiation dose except 0 Gy. Fv/Fm was high at 50 Gy up to 30 DAT and no difference between treatments was observed except for 400 Gy from 44 DAT. The plant height was the highest in 50Gy during the growing period and was higher in the order of 50Dy, 100Gy, 0Gy, 200Gy, 300Gy and 400Gy in 88 DAT. In this experiment, the optimal radiation dose for hormesis was 50Gy and 100Gy, and the optimal radiation dose for mutagenesis seems to be 400 Gy.

  • PDF

Post-harvest LED and UV-B Irradiation Enhance Antioxidant Properties of Asparagus Spears (수확 후 LED와 UV-B 조사에 의한 아스파라거스 순의 항산화 기능 향상)

  • Yoo, Nam-Hee;Jung, Sun-Kyun;Lee, Chong Ae;Choi, Dong-Geun;Yun, Song Joong
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.188-198
    • /
    • 2017
  • Asparagus (Asparagus officinalis L.) spears were treated with white (color temperature 4,500 k), blue (peak 450 nm), and red (peak 660 nm) light-emitting diodes (LEDs) at a photosynthetic photon flux density (PPFD) of $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for 12 h, and UV-B (280 nm) at 0.5 kJ or 1.0 kJ to determine the effect on agronomic characteristics, antioxidant phytochemicals, and antioxidant activity. The fresh weight, length, and width of spears were not affected by light quality treatments. The free sugars and chlorophyll contents were increased by 9 and 41%, respectively in the UV-0.5 kJ treatments. Among the antioxidant phytochemicals (vitamin C, total phenol, rutin, and total flavonoid), vitamin C was most greatly affected by the light treatments. Vitamin C content was significantly increased in asparagus spears subjected to the white (114%), red (137%), and UV-0.5 kJ(127%) treatments compared to the control. By contrast, rutin, total phenol, and total flavonoid content were increased only in samples subjected to the red and UV-0.5 kJ treatment. Furthermore, antioxidant activity, as measured by DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity, increased in white, red, and UV-0.5 kJ treatments by about 43, 41, and 43%, respectively, compared to the control. These results suggest that postharvest treatment of asparagus spears with red light at $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for 12 h or with UV-B (280 nm) at 0.5 kJ could enhance the functional quality of the asparagus spears by increasing the content of phytochemicals like vitamin C, rutin, total phenolics, and total flavonoids.

Chlorophyll Fluorescence, Chlorophyll Content, Graft-taking, and Growth of Grafted Cucumber Seedlings Affected by Photosynthetic Photon Flux of LED Lamps (LED 램프의 광합성유효광양자속이 오이접목묘의 엽록소형광, 엽록소함량, 활착 및 생장에 미치는 영향)

  • Kim, Hyeong Gon;Lee, Jae Su;Kim, Yong Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.231-238
    • /
    • 2018
  • Chlorophyll fluorescence, chlorophyll content, graft-taking and growth of grafted cucumber seedlings as affected by photosynthetic photon flux (PPF) of LED lamps were analyzed in this study. Four PPF levels, namely 25, 50, 100, $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ were provided to investigate the effect of light intensity on the chlorophyll fluorescence, chlorophyll content, graft-taking and growth of grafted cucumber seedlings. Air temperature, relative humidity, and photoperiod for graft-taking were maintained at $25^{\circ}C$, 90%, $16h{\cdot}d^{-1}$, respectively. Maximum quantum yield (Fv/Fm) of rootstock as affected by PPF was found to be 0.84-0.85 and there was no significant change in Fv/Fm. Even though Fv/Fm of scion measured at 2 days after grafting was lowered to 0.81-0.82, after then it gradually increased with increasing PPF. At 4 days after grafting, the chlorophyll content extracted from scion increased with increasing PPF. Graft-taking ratio of grafted cucumber seedlings was 90-95% as PPF was ranged from $25{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ to $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. However, the graft-taking ratio of grafted seedlings healed under PPF of $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ was decreased to 80%. Maximum PPF measured required for smooth joining of rootstock and scion was assumed to be $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. At healing stage of grafted cucumber seedlings, Fv/Fm of scion decreased and at least two days after grafting were required for rooting of grafted seedlings. Chlorophyll fluorescence response of rootstock and scion was linked to light irradiation. Therefore, it was concluded that physical environment including light and humidity during healing process of grafted seedlings should be controlled more precisely to facilitate root formation and to prevent scion from lowering Fv/Fm. Further studies are required to investigate the effects of root development and joining of vascular bundles of grafted seedlings on the chlorophyll content of scion.

Smad6 Gene and Suppression of Radiation-Induced Apoptosis by Genistein in K562 Cells (K562 세포주에서 Genistein에 의해 억제되는 Radiation-induced Apoptosis의 조절 유전자)

  • Jeong, Soo-Jin;Jin, Young-Hee;Yoo, Yeo-Jin;Do, Chang-Ho;Jeong, Min-Ho;Huh, Gi-Yeong;Bae, Hye-Ran;Yang, Kwang-Mo;Moon, Chang-Woo;Oh, Sin-Geun;Hur, Won-Joo;Lee, Hyung-Sik
    • Radiation Oncology Journal
    • /
    • v.19 no.3
    • /
    • pp.245-251
    • /
    • 2001
  • Prupose : The genes involved on the suppression or radiation-induced apoptosis by genistein in K562 leukemia cell line was investigated. Materials and methods : K562 cells in exponential growth phase were irradiated with a linear accelerator at room temperature. For X-ray irradiation and drug treatment, cultures were prepared at $2\times10^5\;cells/mL$. The cells were irradiated with 10 Gy (Clinac 1800C, Varian, USA), Stock solutions of herbimycin A (HMA, Calbiochem, UK) and genistein (Calbiochem, UK) were prepared in dimethylsulfoxide (DMSO, Sigma, UK). After incubation at $37^{\circ}C$ for 24 h, PCR-select cDNA subtractive hybridization, dot hybridization, DNA sequencing and Northern hybridization were examined. Results : Smad6 gene was identified from the differentially expressed genes in K562 cells incubated with genistein which had been selected by PCR-select cDNA subtractive hybridization. The mRNA expression of Smad6 in K562 cells incubated with genistein was also higher than control group by Northern hybridization analysis. Conclusion : We have shown that Smad6 involved on the suppression of radiation-induced apoptosis by genistein in K562 leukemia cell line. It is plausible that the relationship between Smad6 and the suppression of radiation-induced apoptosis is essential for treatment development based on molecular targeting designed to modify radiation-induced apoptosis.

  • PDF