• Title/Summary/Keyword: Irradiation Growth

Search Result 660, Processing Time 0.024 seconds

Effects of Low Dose $\gamma$ Radiation on Callus Growth of Lithospermum erythrorhizon S. (지치 (Lithospermum erythrorhizon S.) Callus 생장에 미치는 저선량 $\gamma$선의 효과)

  • 황혜연;김재성;이영복
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.6
    • /
    • pp.305-310
    • /
    • 2001
  • The effect of low dose ${\gamma}$-radiation on the callus growth of Lithospermum erythrorhizon S. cultured on different medium and lighting condition was investigated. The 8 Gy irradiation stimulated callus growth on LS medium supplemented with BA 2 mg/L and NAA 2 mg/L, however, the growth of callus was more effective on LS medium supplemented with BA 1 mg/L and NAA 1 mg/L under 16 hrs day light. And on the LS medium containing IAA 0.2 mg/L, 16 Gy irradiation increased the callus growth by supplement with kinetin 2 mg/1 and the effect of kinetin was higher than BA at same concentration. The growth of callus was more vigorous on LS medium than MS medium in general. On M-9 medium, the growth of callus was poor regardless lighting conditions, however, by ${\gamma}$-ray irradiation of 16 Gy or 30 Gy, callus growth rates were increased by 30% or more than 30%, especially, under 16 hrs day light condition.

  • PDF

The Effect of Light on the Production of Reserpine in Cultured Rauwolfia serpentina Cells

  • Yamamoto, Osamu
    • Natural Product Sciences
    • /
    • v.2 no.2
    • /
    • pp.90-95
    • /
    • 1996
  • When reserpine-producing cell strains of Rauwolfia serpentina were transferred from the dark to the light irradiation, the production of reserpine was extremely enhanced whereas the cell growth was suppressed. In an incubation period of 20 days, the most effective culture condition for reserpine production was the combination of 8 days of dark culture and following 12 days of light culture. The time courses of both cell growth and reserpine production were measured in vitro in order to clarify the effect of wave length range of light on the biosynthesis of reserpine. Although the growth of cultured cells which had been incubated under continuous red, yellow, and green lights, respectively, was similar to that of the cultured cells subcultured in the dark. The cells cultured under red light irradiation produced less reserpine than dark-grown cultures. Both blue and near-ultraviolet light inhibited the growth of cultured cells. The production of reserpine was strikingly enhanced by blue light, but was strongly inhibited by near-ultraviolet light.

  • PDF

Grain Growth By The Thermal Spike Effect of the Ion Irradiation (이온선 조사의 열충격 효과에 의한 grain 성장)

  • 김성수;송종환;채근화;주장헌;우정주;이임렬;황정남;김현경;문대원
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.3
    • /
    • pp.137-143
    • /
    • 1991
  • The relation between the ion irradiation induced grain growth and the basic parameters sinvolved in ion beam mixing process was studied. TEM micrographs showed that a significant grain growth has been induced by Ar+ irradiation at room temperature. The grain size increases rapidly in low dose region, while it approaches a saturated value in high dose region, and it has close relationship with nuclear energy deposition and thermodynamic properties such as cohesive energy ( Hc) and heat of mixing ( Hm). A model for the grain growth based on the thermal spike induced atomic migration was developed and applied to interpret experimental results.

  • PDF

Characteristics of Initial Growth of Tilia Amurensis Rupr. Seedlings by an Environmental Stress Ultraviolet-B Irradiation (환경적(環境的) 스트레스 자외선(紫外線)-B 조사(照射)에 의한 피나무 유묘(幼苗)의 초기생장(初期生長) 특성(特性))

  • Kim, Jong-Jin;Hong, Sung-Gak
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.4
    • /
    • pp.448-454
    • /
    • 1996
  • This studies was carried out to know the effects of $ultraviolet-B(280{\sim}320nm)$ irradiation on the initial growth of Tilia amurensis Rupr. seedlings. UV-B irradiation inhibited the hypocotyl elongation, height growth, leaf growth, and chlorophyll formation. The inhibition was dose-dependent, and consequently those growths were more inhibited depending on the increase of UV-B levels. Morphological change such as leaf length/leaf width ratio was also observed in the leaves of irradiated seedlings. UV-B irradiation produced scorching, glazing or chlorosis, and stunting or dwarfing in the first or second leaf of the seedlings.

  • PDF

Impact of Anisotropy in Creep and Irradiation Growth on the KOFA Zircaloy-4 Cladding tube Deformation Behavior (크립 및 조사성장 이방성이 KOFA Zircaloy-4 피복관의 변형거동에 미치는 영향)

  • Kim, Gi-Hang;Lee, Chan-Bok;Kim, Gyu-Tae
    • Korean Journal of Materials Research
    • /
    • v.4 no.4
    • /
    • pp.445-452
    • /
    • 1994
  • Three-axial deformation behavior of the Zircaloy cladding tube under the irradiation condition of the fuel in pressurized water reactor can be analyzed by the anisotropy in the creep and the irra- diation growth, which depends on the texture parameter. A methodology to evaluate the impact of the anisotropic creep and irradiation growth on the strain in each axial direction of the cladding tube has been proposed. Based on the measured strains after irradiation and predicted ones with the help of a fuel performance analysis code, it is found that a tangential strain of the cladding tube is caused mainly by the creep, whereas a axial strain of the cladding is caused mainly by the irradiation growth but with a considerable contribution of the creep at low irradiation.

  • PDF

630 nm-OLED Accelerates Wound Healing in Mice Via Regulation of Cytokine Release and Genes Expression of Growth Factors

  • Mo, SangJoon;Chung, Phil-Sang;Ahn, Jin Chul
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.485-495
    • /
    • 2019
  • Photobiomodulation (PBM) using organic light emitting diodes (OLEDs) surface light sources have recently been claimed to be the next generation of PBM light sources. However, the differences between light emitting diodes (LEDs) and OLED mechanisms in vitro and in vivo have not been well studied. In vivo mouse models were used to investigate the effects of OLED irradiation on cellular function and cutaneous wound healing compared to LED irradiation. Mice in the LED- and OLED-irradiated groups were subjected to irradiation with 6 J/㎠ LED and OLED (630 nm), respectively, for 14 days after wounding, and some mice were sacrificed for the experiments on days 3, 7, 10, and 14. To evaluate wound healing, we performed hematoxylin-eosin and Masson's trichrome staining and quantified collagen density by computerized image analysis. The results showed that the size of the wound, collagen density, neo-epidermis thickness, number of new blood vessels, and number of fibroblasts and neutrophils was significantly influenced by LED and OLED irradiation. The tissue levels of interleukin (IL)-β, IL-6 and tumor necrosis factor (TNF)-α were investigated by immunohistochemical staining. LED and OLED irradiation resulted in a significant increase in the tissue IL-β and IL-6 levels at the early stage of wound healing (P < 0.01), and a decrease in the tissue TNF-α level at all stages of wound healing (P < 0.05), compared to the no-treatment group. The expression levels of the genes encoding vascular endothelial growth factor and transforming growth factor-beta 1 were significantly increased in LED and OLED-irradiated wound tissue at the early stage of wound healing (P < 0.01) compared to the no-treatment group. Thus, OLED as well as LED irradiation accelerated wound healing by modulating the synthesis of anti-inflammatory cytokines and the expression levels of genes encoding growth factors, promoting collagen regeneration and reducing scarring. In conclusion, this suggests the possibility of OLED as a new light source to overcome the limitations of existing PBMs.

MODELING OF INTERACTION LAYER GROWTH BETWEEN U-Mo PARTICLES AND AN Al MATRIX

  • Kim, Yeon Soo;Hofman, G.L.;Ryu, Ho Jin;Park, Jong Man;Robinson, A.B.;Wachs, D.M.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.827-838
    • /
    • 2013
  • Interaction layer growth between U-Mo alloy fuel particles and Al in a dispersion fuel is a concern due to the volume expansion and other unfavorable irradiation behavior of the interaction product. To reduce interaction layer (IL) growth, a small amount of Si is added to the Al. As a result, IL growth is affected by the Si content in the Al matrix. In order to predict IL growth during fabrication and irradiation, empirical models were developed. For IL growth prediction during fabrication and any follow-on heating process before irradiation, out-of-pile heating test data were used to develop kinetic correlations. Two out-of-pile correlations, one for the pure Al matrix and the other for the Al matrix with Si addition, respectively, were developed, which are Arrhenius equations that include temperature and time. For IL growth predictions during irradiation, the out-of-pile correlations were modified to include a fission-rate term to consider fission enhanced diffusion, and multiplication factors to incorporate the Si addition effect and the effect of the Mo content. The in-pile correlation is applicable for a pure Al matrix and an Al matrix with the Si content up to 8 wt%, for fuel temperatures up to $200^{\circ}C$, and for Mo content in the range of 6 - 10wt%. In order to cover these ranges, in-pile data were included in modeling from various tests, such as the US RERTR-4, -5, -6, -7 and -9 tests and Korea's KOMO-4 test, that were designed to systematically examine the effects of the fission rate, temperature, Si content in Al matrix, and Mo content in U-Mo particles. A model converting the IL thickness to the IL volume fraction in the meat was also developed.

Effect of LEDs (Light Emitting Diodes) Irradiation on Growth and Mineral Absorption of Lettuce (Lactuca sativa L. 'Lollo Rosa') (LED 광원이 상추의 생육 및 무기물 흡수에 미치는 영향)

  • Shin, Yong Seub;Lee, Mun Jung;Lee, Eun Sook;Ahn, Joon Hyung;Lim, Jae Ha;Kim, Ha Joong;Park, Hoo Won;Um, Young Ghul;Park, So Deuk;Chai, Jang Heui
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.180-185
    • /
    • 2012
  • The objective of this study was carried out to elucidate the effect of LEDs (light emitting diodes) irradiation in relation to early growth and inorganic elements in leaf lettuce (Lactuca sativa L. 'Rollo Rosa'). In morphological changes of leaves, shoot elongation and hypocotyl length showed poor growth in red light irradiation, while the red + blue light irradiation induced shorter plant height and much greater leaf numbers resulting in increased fresh weight. In change of the Hunter's color and SPAD values, lettuce seedlings grown under in red + blue and fluorescent light irradiation had a higher $a^*$ value, otherwise SPAD values were not changed in these light irradiations. Interestingly, relative chlorophyll contents showed 1.8 times increased redness in the treatment of red + blue light irradiation. Inorganic element (N, Ca, Mg, Mn, and Fe) and ascorbic acid contents were increased in lettuce plants grown under LEDs light irradiation compared to those of lettuce grown under the fluorescent light which showed higher P and Mn contents. In conclusion, it is considered that red + blue light irradiation which stimulates growth and higher nutrient uptake in leaf lettuce could be employed in containers equipped with LEDs.

Comparison of the growth characteristics of Aurcularia auricula-judae according to gamma ray irradiation dose (감마선 조사량에 따른 Aurcularia auricula-judae의 생육특성 비교)

  • Jeong-Heon Kim;Jin-Woo Lee;Tae-Min Park;Soon-Jae Kwon;Chang-Hyun Jin;Youn-Jin Park;Myoung-Jun Jang
    • Journal of Mushroom
    • /
    • v.21 no.4
    • /
    • pp.247-253
    • /
    • 2023
  • In this study, we examined the effects of gamma irradiation dosage on the mycelial growth of Auricularia auricula-judae and performed analyses of fruiting body yield, growth characteristics, taste, fragrance, and mineral composition. Assessments of mycelial growth in response to gamma irradiation at different intensities revealed an enhancement in the growth of fungi exposed to irradiation at 200 Gy. Fruiting body yield was also highest at 200 Gy, followed by 800 Gy and the control group. On the basis of these observations, we subsequently applied gamma ray doses of 200 and 800 Gy to examine the effects of irradiation on fungal quality characteristics. In terms of the taste of fruiting bodies, we detected no significant differences among the control, 200 Gy, and 800 Gy groups. Contrastingly, with respect to fragrance, we found that fungi treated with 200 Gy were characterized by a pattern that differed from those of the control and other treatment groups. Furthermore, whereas we detected no significant difference among treatments with respect total dietary fiber content, calcium content was found to be higher in the treatment groups compared with the control group, with the highest content being measured in fungi exposed to 800 Gy irradiation. Copper content was confirmed to be higher in the control group, whereas there were no significant differences between the fungi irradiated with 200 and 800 Gy. Contrastingly, the highest levels of zinc were detected in response to 200 Gy irradiation, followed by 800 Gy. Collectively, our findings thus indicate that gamma irradiation can contribute to promoting increases in the fruiting body yield and mineral contents of mushrooms.

On the change of glucose and phosphorus of the silkworm eggs Bombyx, mori. L. during it development and the effect of ${\gamma}$-ray irradiation. (가잠란배자발육과정에서 Glucose와 phosphorus의 변동 및 방사선에 의한 영향)

  • 김원경;임영우
    • Journal of Sericultural and Entomological Science
    • /
    • v.10
    • /
    • pp.63-66
    • /
    • 1969
  • As a result of analyzing the change of material substance of all sorts biochemically and comparing the control with ${\gamma}$-ray irradiation (800r, 400 min), incubating the silkworm egges (bombyx. mori. L.) as the objective in the process of growth of embryo shortly before hatching, the following conclusion has been found. 1. Glucose has shown the increase of 281.2 mg/g in control during the pigment stage and it has shown the increase of 179.6 mg/g in ${\gamma}$-ray irradiation during the same period. The difference in quantity between the former and the latter is due to the fact that the growth of embryo has been influenced by the radio active. Glucose has changed with phosphorus the other way round. 2. Control organic phosphorus has shown the increase of 5.23 mg/g during the Byong B or KI A in which organ and tissue in the embryo has been formed. Organic phosphorus in ${\gamma}$-ray irradiation has shown the increase of 5.73 mg/g during KI B. Inorganic Phosphorus has shown only a little change in the control and ${\gamma}$-ray irradiation. The phosphorus in both has shown a little quantity in the ${\gamma}$-ray irradiation in early period of incubation. After the Ki A embryo, it has increased rapidly and it has increased till the hatching more continually than in control. The about results of the research will be helpful and instructive to the betterment and improvement, breeding and management of animals and plants.

  • PDF