Effect of LEDs (Light Emitting Diodes) Irradiation on Growth and Mineral Absorption of Lettuce (Lactuca sativa L. 'Lollo Rosa')

LED 광원이 상추의 생육 및 무기물 흡수에 미치는 영향

  • Shin, Yong Seub (Gyeongsangbuk-do Agricultural Research and Extension Services) ;
  • Lee, Mun Jung (Gyeongsangbuk-do Agricultural Research and Extension Services) ;
  • Lee, Eun Sook (Gyeongsangbuk-do Agricultural Research and Extension Services) ;
  • Ahn, Joon Hyung (Gyeongsangbuk-do Agricultural Research and Extension Services) ;
  • Lim, Jae Ha (Gyeongsangbuk-do Agricultural Research and Extension Services) ;
  • Kim, Ha Joong (Ecotech Co., Ltd.) ;
  • Park, Hoo Won (KAST Eco-friendly Farming Techniques Co., Ltd.) ;
  • Um, Young Ghul (Vegetable Research Division, national Institute of Horticultural and Herbal Science, RDA) ;
  • Park, So Deuk (Gyeongsangbuk-do Agricultural Research and Extension Services) ;
  • Chai, Jang Heui (Gyeongsangbuk-do Agricultural Research and Extension Services)
  • Received : 2010.08.28
  • Accepted : 2010.09.11
  • Published : 2012.09.30

Abstract

The objective of this study was carried out to elucidate the effect of LEDs (light emitting diodes) irradiation in relation to early growth and inorganic elements in leaf lettuce (Lactuca sativa L. 'Rollo Rosa'). In morphological changes of leaves, shoot elongation and hypocotyl length showed poor growth in red light irradiation, while the red + blue light irradiation induced shorter plant height and much greater leaf numbers resulting in increased fresh weight. In change of the Hunter's color and SPAD values, lettuce seedlings grown under in red + blue and fluorescent light irradiation had a higher $a^*$ value, otherwise SPAD values were not changed in these light irradiations. Interestingly, relative chlorophyll contents showed 1.8 times increased redness in the treatment of red + blue light irradiation. Inorganic element (N, Ca, Mg, Mn, and Fe) and ascorbic acid contents were increased in lettuce plants grown under LEDs light irradiation compared to those of lettuce grown under the fluorescent light which showed higher P and Mn contents. In conclusion, it is considered that red + blue light irradiation which stimulates growth and higher nutrient uptake in leaf lettuce could be employed in containers equipped with LEDs.

식물공장 내 적색광, 청색광, 적청 혼합광, 자외선, 적외선, 형광등의 광원을 달리하여 어린잎 상추의 생육과 무기성분 흡수를 검토하였다. 잎의 형태는 Red 파장에서 초장 및 하배축의 길이신장이 촉진되어 도장하였고 Far red에서는 생장이 불가능하였으나 Red + Blue의 혼합광원에서는 초장이 짧고 엽수가 많고 생체중이 증가하여 상추의 형태 및 발달 차원에서 유의적으로 좋았다. 광질에 따른 어린잎 상추의 색차 및 상대 엽록소 함량을 조사한 결과, 적색도를 나타내는 Hunter $a^*$ 값은 Red + Blue 혼합광 및 형광등에서 높았고 적색광 및 자외선에서는 낮게 나타났는데 상대 엽록소 함량을 나타내는 SPAD도 같은 경향이었다. 특히 상대엽록소 함량은 형광등의 10.5에 비해 혼합광에서 1.8배 향상된 적색도를 나타내었다. 광원별 상추의 무기물 함량을 조사한 결과, pH 및 K 함량은 모든 처리에서 차이가 없었으나 N, Ca, Mg, Mn, Fe, Ascorbic acid 함량은 LED 처리구에서 많았고 P 및 Mn 함량은 형광등 처리구에서 많았다. 이상의 결과를 요약하면 단색광에 비하여 Red + Blue 혼합광에서 상추의 생육이 우수하고 무기물 함량이 증대되어 식물공장 내 생산성 향상을 위해서는 혼합광 조절로 상품성 있는 고품질의 상추 생산이 가능 할 것으로 생각되었다.

Keywords

References

  1. Barta, D.J., T.W. Tibbitts, R.J. Bula, and R.C. Morrow. 1992. Evaluation of light emitting diode characteristics for a space-based plant irradiation source. Adv. Space Res. 12(5):141-149. https://doi.org/10.1016/0273-1177(92)90020-X
  2. Bula, R.J., R.C. Morrow, T.W. Tibbitts, R.J. Bula, D.J. Barta, R.W. Ignatius, and T.S. Martin. 1991. Lightemitting diodes as a radiation source for plants. Hort- Science 26(2):203-205.
  3. Inoue, Y. and K. Shibata. 1974. Comparative examination of terrestrial plant leaves in terms of light-induced absorption changes due to chloroplast rearrangements. Plant and Cell Physiology 15:717-721.
  4. Lee, J.G., S.S. Oh, S.H. Cha, Y.A. Jang, S.Y. Kim, Y.C. Um, and S.Y. Cheong. 2010. Effects of red/blue light ratio and short-term light quality conversion on growth and anthocyanin contents of baby leaf lettuce. J. Bio- Env. Con. 19:351-359.
  5. Lee, G.J., H.M. Shin, K.S. Kim, C.H. Lee, and J.H. Kim. 1999. Effects of added chlorides and their concentrations on growth and nitrate content in leaf lettuce (Lactuca sativa L.) in hydroponics. Plant Res. 2(1):26-30.
  6. Lee, J.G., B.Y. Lee, and H.J. Lee 2006. Accumulation of phytotoxic organic acids in reused nutrient solution during hydroponic cultivation of lettuce (Lactuca sativa L.). Sci. Hort.110:119-128. https://doi.org/10.1016/j.scienta.2006.06.013
  7. McCree, K.J. 1972. The action spectrum, absorbance and quantum yield of photosynthesis in crop plants. Agricultural and Metereology 9:191-216.
  8. Nam, K.C., J.H. Kim, D.U. Ahn, and S.C. Lee. 2004. Far-infrared radiation increases the antioxidant properties of rice hull extract in cooked turkey meat. J. Agric. Food Chem. 52:374-379. https://doi.org/10.1021/jf035103q
  9. Park, K.W. and J.M. Lee. 2006. Wrap-ups: A unique method of vegetable usage and consumption in Korea. Chronica Hort. 46:13-15.
  10. Park, Y.I., W.S. Chow, and J.M. Anderson. 1996. Chloroplast movement in the shade plant Tradescantia albiflora helps protect photosystem II against light stress. Plant Physiology 111:867-875.
  11. Pinho, P., R. Lukkala, L. Sarkka, E. Tetri, R. Tahvonen, and L. Halonen. 2007, Evaluation of lettuce growth under multi-spectral-component supplemental solid state lighting in greenhouse environment. International Review of Electrical Engineering 2(6):22-29.
  12. Yorio, N.C., G.D. Goins, H.R. Kagie, R.M. Wheeler, and J.C. Sager. 2001. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortScience 36(2): 380-383.
  13. Zhou, Y. and B.R. Singh. 2004. Effect of light on anthocyanin levels in submerged, harvested Cranberry fruit. J. Biomed. Biotechnol. 5:259-263.