• 제목/요약/키워드: Iron-oxide

검색결과 750건 처리시간 0.023초

다공성 알루미늄 양극산화 피막에 도금된 철 및 코박트의 자기적 성질 (Magnetic Properties of Electrodeposited Iron and Cobalt on Porous Aluminum Oxide Layer)

  • 김기호;강탁;손헌준
    • 한국표면공학회지
    • /
    • 제23권3호
    • /
    • pp.150-159
    • /
    • 1990
  • The magnetic properties of electrodeposited iron and cobalt films on porous aluminum oxide film were examined. There exists perpendicular magnetic anisotropy due to the shape anisotropy. The coercivity and squareness ratio of films were strongly dependent on deposited particle diameter. The effect of packing fraction on squareness ratio was also apprecible. Unlike the iron-deposited films, the magnetic properties of cobalt films were changed by preferred orientation because of it's large crystal ansotropy constant.(about 10 times of Fe) The Fe deposited films were found to be more suitable for perpendicular magenetic recording media bacause perpendicular coercivity, squareness ratio and the ratio of perpendicular coercivity to horizontal ones of iron films are greater than those of cobalt films.

  • PDF

일부 반면형 호흡기 보호구에 대한 용접작업장에서의 Workplace Protection Factors(WPF) 평가 (Evaluation of Workplace Protection Factors for Some Half-Facepiece Respirators in Welding Workplace)

  • 변상훈;나명채;김현욱;임호섭
    • 한국산업보건학회지
    • /
    • 제9권1호
    • /
    • pp.14-22
    • /
    • 1999
  • This study was conducted to evaluate workplace protection factors(WPF) for two half-facepiece respirators (HR-1, HR-2) in welding workplace and to provide data on the workplace performance of negative-pressure, half-facepiece respirators against airborne particulate contaminants. The outside iron oxide(Fe2O3) concentration of welding fume for the respirator HR-1 ranged from 0.177 to $12.508mg/m^3$ with a geometric mean of $1.118mg/m^3$ and the HR-2 respirator showed a iron oxide range of 0.500 to $3.494mg/m^3$ with a geometric mean of $1.082mg/m^3$. But the inside oxide concentration of welding fume for the respirator HR-1 ranged from 0.002 to $0.364mg/m^3$ with a geometric mean of $0.019mg/m^3$ and the HR-2 respirator showed a iron oxide range of 0.012 to $0.639mg/m^3$ with a geometric mean of $0.041mg/m^3$. The iron oxide inside concentrations were significantly less than $5mg/m^3$(TLV) for both of respirators. The WPF were ranged from 3 to 3744 with a geometric mean of 60 for HR-1 and range from 2 to 129 a geometric mean of 26 for HR-2. And, in this study, the 5th percentile of the workplace protection factors for half-facepiece aspirators (HR-1, HR-2) were 11.2 and 7.1, respectively. The correlation relationship between the Quantative Fit Factors(QNFT) and the WPF for half-mask negative pressure respirators were 0.099 and 0.460.

  • PDF

인체 중간엽 줄기세포의 표지를 위한 상용화 된 Superparamagnetic Iron Oxide Nanoparticle과 Tansfection Agent의 적절한 병용을 위한 연구 (Evaluation of Optimal Combination of Commercially Available Superparamagnetic Iron Oxide Nanoparticles and Transfection Agents for Labelling of Human Mesenchymal Stem Cells)

  • 김성헌;오순남;박윤희;강원경;안국진;정수교
    • Investigative Magnetic Resonance Imaging
    • /
    • 제16권1호
    • /
    • pp.31-39
    • /
    • 2012
  • 목적: 상용화 된 superparamagnetic iron oxide (SPIO) nanoparticles과 transfection agent (TA)의 최적의 병용 용량을 알아보고자 하였다. 대상과 방법: Protamine sulfate (Pro), poly-L-lysin (PLL)과 ferumoxide, ferucarbotran을 다양한 농도에서 인체 중간엽 줄기세포에서 배양하여 세포 생존능을 알아보았다. 세포 철 섭취율은 정성적으로, 정량적으로 분석하였다. 결과: Ferumoxide 처리군의 생존능과 철 섭취율은 ferucarbotrn 처리군보다 통계적으로 의미있게 높았다 (p < 0.05). T2 이완시간은 ferumoxide 처리군에서 짧았다 (p < 0.05). 25 ${\mu}g$/ml ferumoxide와 3.0 ${\mu}g$/ml Pro 또는 PLL 병용군이 최적의 조건이었다. 결론: Ferumoxide 처리군의 세포 생존능과 철 섭취율은 ferucarbotrn 처리군보다 높았다. 25 ${\mu}g$/ml ferumoxide와 3.0 ${\mu}g$/ml TA는 줄기세포 표지에 적합하다.

화학기상응축법으로 제조된 철 나노분말의 산화저항에 관한 연구 (A Study on Oxidation-Resistance of Iron Nanoparticles Synthesized by Chemical Vapor Condensation Process)

  • 이동원;유지훈;배정현;장태석;김병기
    • 한국분말재료학회지
    • /
    • 제12권3호
    • /
    • pp.225-230
    • /
    • 2005
  • In order to prevent the oxide formation on the surface of nano-size iron particles and thereby to improve the oxidation resistance, iron nanoparticles synthesized by a chemical vapor condensation method were directly soaked in hexadecanethiol solution to coat them with a polymer layer. Oxygen content in the polymer-coated iron nanoparticles was significantly lower than that in air-passivated particles possessing iron-core/oxide-shell structure. Accordingly, oxidation resistance of the polymer-coated particles at an elevated temperature below $130^{\circ}C$ in air was $10\~40$ times higher than that of the air- passivated particles.

영가철과 여러 가지 산화철 조합공정을 이용한 질산성질소 환원에 관한 연구 (Nitrate Reduction by Fe(0)/iron Oxide Mineral Systems: A Comparative Study using Different Iron Oxides)

  • 송호철;전병훈;조동완
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권1호
    • /
    • pp.63-69
    • /
    • 2014
  • This paper presents the feasibility of using different iron oxides (microscale hematite (HT), microscale magnetite (MT), and nanoscale maghemite (NMH)) in enhancing nitrate reduction by zero-valent iron (Fe(0)) under two solution conditions (artificial acidic water and real groundwater). Addition of MT and NMH into Fe(0) system resulted in enhancement of nitrate reduction compared to Fe(0) along reaction, especially in groundwater condition, while HT had little effect on nitrate reduction in both solutions. Field emission scanning electron microscopy (FESEM) analysis showed association of MT and NMH with Fe(0) surface, presumably due to magnetic attraction. The rate enhancement effect of the minerals is presumed to arise from its role as an electron mediator that facilitated electron transport from Fe(0) to nitrate. The greater enhancement of MT and NMH in groundwater was attributed to surface charge neutralization by calcium and magnesium ions in groundwater, which in turn facilitated adsorption of nitrate on Fe(0) surface.

산화아연(酸化亞鉛)의 탄소열환원반응(炭素熱還元反應)에서 산화철(酸化鐵)의 영향(影響) (Carbothermic Reduction of Zinc Oxide with Iron Oxide)

  • 김병수;박진태;김동식;유재민;이재천
    • 자원리싸이클링
    • /
    • 제15권4호
    • /
    • pp.44-51
    • /
    • 2006
  • 대부분 전기로 분진 처리공정은 전기로 분진으로부터 아연을 회수하기 위하여 전기로 분진에 함유된 산화아연의 환원제로 탄소를 사용한다. 본 연구에서는 산화아연의 탄소열환원반응에 관한 전기로 분진의 주성분 중의 하나인 산화철의 영향에 대하여 속도론적으로 조사되었다. 실험은 반응온도 1173 K-1373 K 범위에서 중량감량법을 이용하여 수행되었다. 실험결과, 적절한 량의 산화철 첨가는 산화아연의 탄소열환원반응 속도를 증진시키는 것으로 나타났다. 이것은 산화철이 산화아연의 탄소열환원반응에서 탄소의 gasification 반응을 촉진시키기 때문으로 관찰되었다. 표면화학반응이 율속인 shrinking core model 1173 - 1373 K 범위에서 고체 탄소에 의한 산화아연의 환원반응 속도 데이터를 분석하는데 유용한 것으로 분석되었다. ZnO-C 반응계에서 활성화 에너지는 224kJ/mol (53 kcal/nol)로, $ZnO-Fe_{2}O_{3}-C$ 반응계에서 활성화 에너지는 175kJ/mol(42kca1/mol)로 그리고 ZnO-밀스케일-C 반응계에서 활성화 에너지는 184 kJ/mol (44 kcal/mol)로 각각 계산되었다.

Evaluation of thermally cross-linked superparamagnetic iron oxide nanoparticles for the changes of concentration and toxicity on tissues of Sprague-Dawley rats

  • Hue, Jin Joo;Lee, Hu-Jang;Jon, Sangyong;Nam, Sang Yoon;Yun, Young Won;Kim, Jong-Soo;Lee, Beom Jun
    • 대한수의학회지
    • /
    • 제54권4호
    • /
    • pp.245-252
    • /
    • 2014
  • This study was investigated the change of concentration and toxicity of thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPION) on tissues of Sprague-Dawley rats. TCL-SPION at the dose of 15 mg/kg body weight was intravenously injected into the tail vein of the male Sprague-Dawley rats. The fate of TCL-SPION in serum, urine and tissues was observed during 28 days. Serum iron level was maximal at 0.25 h post-injection and gradually declined thereafter. In addition, the sinusoids of liver and the red pulp area of spleen were mainly accumulated iron from 0.5 h to 28-day post-injection. In kidney, iron deposition was detected in the tubular area until 0.5 h after injection. Malondialdehyde concentration in the liver slightly increased with time and was not different with that at zero time. In the liver and spleen, TNF-${\alpha}$ and IL-6 levels of TS treated with TCL-SPION were not different with those of the control during the experimental period. From the results, TCL-SPION could stay fairly long-time in certain tissues after intravenous injection without toxicity. The results indicated that TCL-SPION might be useful and safe as a contrast for the diagnosis of cancer or a carrier of therapeutic reagents to treat diseases.

Green Synthesis to Develop Iron-Nano Formulations and Its Toxicity Assays

  • Kulkarni, Smital;Mohanty, Nimain;Kadam, Nitin N.;Swain, Niharika;Thakur, Mansee
    • 대한약침학회지
    • /
    • 제23권3호
    • /
    • pp.165-172
    • /
    • 2020
  • Objectives: In the past few years, herbal medicines have gained popularity over synthetic drugs because of their natural source and minimal side effects which has led to a tremendous growth of phytopharmaceuticals usage. With the development of nanotechnology, it provides alternative approaches to overcome several limitations using nano-formulations. In spite of considerable quantity of antianemic preparations with different iron forms available, currently additives are used and represented in modern pharmaceutical market. Iron deficiency anemia is a major global public health problem which particularly affects pregnant women, children and elderly persons. The situation is complicated because of disadvantages and drug side effects from existing antianemic medicines. There is a great demand for the development of new antianemic preparations. Green synthesis of iron oxide nanoparticles, possess high potential in this field. Methods: Our study focuses on developing green synthesis of iron oxide nanoparticles (IONPs) of 10-50 nm with spherical shape where different dosages were used -1 mg/kg, 10 mg/kg and 100 mg/kg for exposure in Wistar albino female rats for 28 days. The toxicity was assessed using various parameters such as measurements of the rat body and organ mass, hematology, biochemical evaluation and histopathological examinations. Results: No significant differences were observed in body and organ weights. Hematological indices also indicated no significant differences whereas biochemical factors showed increase in levels of direct bilirubin and globulin of medium as well as high dose and SGPT levels were increased only in high dose. The major organs (heart, kidney and liver) showed histopathological alterations in 10 and 100 mg/kg whereas brain showed only in 100 mg/kg. Conclusion: The toxicity of IONPs was found to be more significant when the concentration was increased; however, low doses can be used for further investigation as an antianemic preparation.