• Title/Summary/Keyword: Iron sand

Search Result 154, Processing Time 0.029 seconds

Material Characteristic of Slags and Iron Bloom Produced by Smelting Process Using Sand Iron (사철 제련을 통해 생산된 슬래그와 괴련철의 재료과학적 특성 비교)

  • Cho, Sung Mo;Cho, Hyun Kyung;Kwon, In Cheol;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.34 no.1
    • /
    • pp.39-50
    • /
    • 2018
  • This study replicated traditional smelting methods to produce iron blooms from sand iron. The metallurgical properties of the slag and the iron blooms were analyzed. The sand iron materials used in the smelting experiments, which were based on ancient documents, were collected from Gyeong-Ju and Pohang. Analysis by WD-XRF and XRD showed that Gyeong-Ju's sand iron contains a high-titanium, with magnetite, and Pohang's sand iron contains a low-titanium, which magnetite and ilmenite were mixed. Analysis of the slag with XRD, and the micro-structure with metal microscopes and SEM-EDS, confirmed that the major compounds in the slag of the Gyeong-Ju's sand iron were fayalite and $w\ddot{u}stite$, and those in the slag of the Pohang's sand iron were titanomagnetite and fayalite. The differences in the main constituents were confirmed according to the Ti quantity. Finally, we observed the microstructures of the iron blooms. In the case of the iron bloom produced from Gyeong-Ju's sand iron, the outside was found to be dominantly a pearlite of eutectoid steel, while the inside was a hypo-eutectoid steel where ferrite and pearlite were mixed together. While, the major component of the iron bloom produced from Pohang's sand iron was ferrite, which is almost like pure iron. However, there were many impurities inside the iron blooms. Therefore, this experiment confirmed that making ironware required a process that involved removing internal impurities, refining, and welding. It will be an important data to identify the characteristics of iron by-products and the site through traditional iron-making experiments under various conditions.

The study of manganese removal mechanism in aeration-sand filtration process for treating bank filtered water (강변여과수 처리를 위한 포기-모래여과공정에서 망간제거 기작에 관한 연구)

  • Choi, Seung-Chul;Kim, Se-Hwan;Yang, Hae-Jin;Lim, Jae-Lim;Wang, Chang-Keun;Jung, Kwan-Sue
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.3
    • /
    • pp.341-349
    • /
    • 2010
  • It is well known that manganese is hard to oxidize under neutral pH condition in the atmosphere while iron can be easily oxidized to insoluble iron oxide. The purpose of this study is to identify removal mechanism of manganese in the D water treatment plant where is treating bank filtered water in aeration and rapid sand filtration. Average concentration of iron and manganese in bank filtered water were 5.9 mg/L and 3.6 mg/L in 2008, respectively. However, their concentration in rapid sand filtrate were only 0.11 mg/L and 0.03 mg/L, respectively. Most of the sand was coated with black colored manganese oxide except surface layer. According to EDX analysis of sand which was collected in different depth of sand filter, the content of i ron in the upper part sand was relatively higher than that in the lower part. while manganese content increased with a depth. The presence of iron and manganese oxidizing bacteria have been identified in sand of rapid sand filtration. It is supposed that these bacteria contributed some to remove iron and manganese in rapid sand filter. In conclusion, manganese has been simultaneously removed by physicochemical reaction and biological reaction. However, it is considered that the former reaction is dominant than the latter. That is, Mn(II) ion is rapidly adsorbed on ${\gamma}$-FeOOH which is intermediate iron oxidant and then adsorbed Mn(II) ion is oxidized to insoluble manganese oxide. In addition, manganese oxidation is accelerated by autocatalytic reaction of manganese oxide. The iron and manganese oxides deposited on the surface of the sand and then are aged with coating sand surface.

Assessment of concrete properties with iron slag as a fine aggregate replacement

  • Noufal, E. Rahmathulla;Kasthurba, A.K.;Sudhakumar, J.;Manju, Unnikrishnan
    • Advances in concrete construction
    • /
    • v.9 no.6
    • /
    • pp.589-596
    • /
    • 2020
  • In an effort to find alternate, environment friendly and sustainable building materials, the scope of possible utilization of iron slag (I-sand), generated as a by-product in iron and steel industries, as fine aggregates in reinforced cement concrete (RCC) made with manufactured sand (M-sand) is examined in this manuscript. Systematic investigations of the physical, mechanical, microstructural and durability properties of I-sand in comparison with RCC made with M-sand have been carried out on various mix designs prepared by the partial/full replacement of I-sand in M-sand. The experimental results clearly indicate the possibility of utilizing iron slag for preparing RCC in constructions without compromising on the property of concrete, durability and performance. This provides an alternate possibility for the effective utilization of industrial waste, which is normally disposed by delivering to landfills, in building materials which can reduce the adverse environmental effects caused by indiscriminate sand mining being carried out to meet the growing demands from construction industry and also provide an economically viable alternative by reducing the cost of concrete production.

Neutron imaging for metallurgical characteristics of iron products manufactured with ancient Korean iron making techniques

  • Cho, Sungmo;Kim, Jongyul;Kim, TaeJoo;Sato, Hirotaka;Huh, Ilkwon;Cho, Namchul
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1619-1625
    • /
    • 2021
  • This paper demonstrates the possible nondestructive analysis of iron artifacts' metallurgical characteristics using neutron imaging. Ancient kingdoms of the Korean Peninsula used a direct smelting process for ore smelting and iron bloom production; however, the use of iron blooms was difficult because of their low strength and purity. For reinforcement, iron ingots were produced through refining and forge welding, which then underwent various processes to create different iron goods. To demonstrate the potential analysis using neutron imaging, while ensuring artifacts' safety, a sand iron ingot (SI-I) produced using ancient traditional iron making techniques and a sand iron knife (SI-K) made of SI-I were selected. SI-I was cut into 9 cm2, whereas the entirety of SI-K was preserved for analysis. SI-I was found to have an average grain size of 3 ㎛, with observed α-Fe (ferrite) and pearlite with a body-centered cubic (BCC) lattice structure. SI-K had a grain size of 1-3 ㎛, α-Ferrite on its backside, and martensite with a body-centered tetragonal (BCT) structure on its blade. Results show that the sample's metallurgical characteristics can be identified through neutron imaging only, without losing any part of the valuable artifacts, indicating applicability to cultural artifacts requiring complete preservation.

Study for Improving Fatigue Strength of Slurry Iron Sand Carrier (Slurry Iron Sand Carrier의 피로 강도 향상에 관한 연구)

  • Jang, Cheol-min;Kim, Dae-hun;Lee, Kyu-ho;Lee, Sang-bock;Koh, Myeong-Seob
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.85-92
    • /
    • 2015
  • In general, when ships are designed, structural strength and fatigue strength must be verified based on the relative rules respectively. In case of Slurry Iron Sand Carrier designed to carry Iron-Sand saturated at water content, there is no special consideration of fatigue strength analysis. However, this vessel is similar to Ore Carrier in consideration of the overall characteristics of loaded cargo and the shape of cargo hold. Therefore we verified fatigue strength based on fatigue analysis procedure of ore carrier in DNV Rules and carried out the study for improving of fatigue strength of Slurry Iron Sand Carrier.

  • PDF

Modeling As(III) and As(V) adsorption and transport from water by a sand coated with iron-oxide colloids

  • Ko, Il-Won;Lee, Cheol-Hyo;Kim, Kyoung-Woong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.243-247
    • /
    • 2004
  • Tile development of a porous iron-oxide coated sand filter system can be modelled with the analytical solution of tile transport equation in order to obtain the operating parameters and investigate the mechanism of arsenic removal. The adsorbed amount from the model simulation showed the limitation of adsorption removal during arsenic transport. A loss reaction term in the transport equation plays a role in the mass loss in column conditions, and then resulted into the better model fitting, particularly, for arsenate. Further, the competitive oxyanions delayed the breakthrough near MCL (10 $\mu$g/L) due to the competitive adsorption. This is the reason why arsenate can be strongly attracted in tile interface of an iron-oxide coated sand, and competing oxyanions can occupy the adsorption sites. Therefore, arsenic retention was regulated by non-equilibrium of arsenic adsorption in a porous iron-oxide coated sand media. The transport-limited process seemed to be affect the arsenic adsorption by coated sand.

  • PDF

The Mechanism of Inhibiting Burn-on Sand to Iron Castings by Coal-dust (Seacoal) for a Molding Sand Additive. (주형에서 석탄분 첨가제(시콜)에 의한 주철주물의 소착억제기구에 관하여)

  • Hong, Yung-Myung;Lee, Yeong-Sang;Kim, Dong-Ok
    • Journal of Korea Foundry Society
    • /
    • v.3 no.2
    • /
    • pp.100-105
    • /
    • 1983
  • The mechanism of coal-dust action on inhibiting burn-on of Sand to iron castings was taken in consideration by means of casting test and thermal decomposition test. To compare the ability of inhibiting sand burn-on, test castings were produced in green sand moulds added three different coal-rusts. And quantitative determination of lustrous carbon and volatiles production for coal-dust samples were performed.The lustrous carbon production was in good agreement with the casting test result. But total voltiles production was relatively inefficient on hibiting sand burn-on to test castings.The lustrous carbon theory can be given to explain the mechanism which coal-dust inhibits sand burn-on to iron castings.

  • PDF

Removal of Copper Ion with Iron-Oxide-Coated Sand (산화철 피복사에 의한 구리이온제거)

  • 곽명화;우성훈;김익성;박승조
    • Resources Recycling
    • /
    • v.9 no.1
    • /
    • pp.70-75
    • /
    • 2000
  • The sand particle was coated with $Fe_3O_4$ and then $Fe_2O_3$ that adsorption capacity was more excellent than $Fe_3O_4$ was mostly found in 2nd step for preparation of iron-oxide-coated sand (IOCS). The copper removal rate was 74.9 percent by adding 30 gram per liter iron-oxide-coated sand from the solution with 5 mg/l Cu in 20 minute. Breakthrough time occurred in 23 hours and adsorption capacity 0.87$\cdot$Cu/g$\cdot$IOCS in case of breakthrough copper concentration was 1.0 mg/l in the continuous test.

  • PDF

Removal of Se(IV) by the Fe(III)-impregnated Sea sand - Zeta potential approach to depict the binding between Fe(III) and Sea sand (표면 처리한 Sea sand를 이용한 Se(IV) 제거 - Zeta potential을 통한 Fe(III)간의 반은 메카니즘 연구)

  • 박상원;강혜정
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.205-209
    • /
    • 1999
  • Iron hydroxides are good adsorbents for uncomplexed metals, some metal-ligand complexes and many metal oxyanions. However, their adsorption properties of these precipitations are not fully exploited in wastewater treatment operations because of difficulties associated with their separation from the aqueous phase. This study describes experiments in which iron hydroxides were coated onto the surface of ordinary adsorbents(Sea sand) that are very resistant to acids, The coated adsorbents were used in adsorption of oxyanionic metals. The process was successful in removing some anions such as $SeO_3(-II)$ over a wide range of metal concentrations and sorption of oxyanionic metals increased with decreasing pH. Formation of two surface complexes for oxyanionic metals adsorption on iron hydroxides comprise (1) complexation of the free anion by a positively charged surface site, and (2) protonation of the adsorbed anion (or alternatively adsorption of a protonated form from solution) The coated adsorbents are inexpensive to prepare and could serve as the basis of a useful oxyanionic metal removal.

  • PDF

The Wear charactericstics and Machinability to The type of Cast-iron of The Slot part of cylinder for Rotary compressor (로타리압축기 실린더 Slot부의 주조조직에 따른 가공표면 및 마모특성에 관한 연구)

  • 김동한
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.77-82
    • /
    • 1998
  • The Part of slot on rotary compressor which plays an important part of the reliability and performance is studied on machinability and the wear characteristics for the specimen made by sand mold and permanent mold. The experiment are used the face cutter of milling machine which make the processing surface like broaching process and rollblock wear test machine. Permanent-mold casting iron is not affected by variation of RPM of milling machine, but sand-mold cast-iron is improved to increasing RPM. Also sand-mold casting iron shows superior wear characteristic to permanent-mold casting iron. This results from harder matrix of pearlite structure and self-lubrication characteristics of graphite. And wear particles in tested oil show shape and size similar to severe wear particles of oil taken from rotary compressor. The material and surface condition of slot play important part of the reliability and performance.

  • PDF