• Title/Summary/Keyword: Iron particle

Search Result 361, Processing Time 0.033 seconds

Finite Element Analysis of Carbon Steel according to Shape and Distribution of Phase (탄소강 조직의 형상 및 분포에 따른 유한요소해석)

  • Seo, Dae-Cheol;Lee, Duck-Hee;Lee, Jung-Ju;Nam, Soo-Woo;Choo, Wung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.780-790
    • /
    • 1997
  • In this study, the stress-strain relations of steels have been calculated as a function of microstructural morphologies of each phase by use of FEM program(i.e. ABAQUS). The mechanical behavior of low carbon steels is affected by the microstructural factors such as yield ratio, volume fraction, shape and distribution of each phase and so on. The effects of shape, volume fraction and yield ratio of each phase on the mechanical behavior were analyzed by using unit cell and whole specimen size models. Results obtained are summarized as follows. As the yield ratio of hard phase to that of soft phase and volume fraction of hard phase were increased, stress level of flow curves were increased. It was found that in whole specimen size model, as the particle size was decreased, higher stress level was shown. Lastly the relationship between microstructure and tensile properties was examined by using the steels with various microstructural morphologies.

Mechanical Properties of PVC Composite Containing Iron Dust (제철 분진을 함유한 PVC 복합체 수지의 기계적 성질)

  • Nah, Jae-Woon;Kim, Myung-Yul
    • Elastomers and Composites
    • /
    • v.33 no.5
    • /
    • pp.370-376
    • /
    • 1998
  • Mechanical properties of PVC[poly(vinylchloride)] composites containing the dust from blast and converter (Kwangyang Iron Co.) were investigated as a function of dust content. Tensile strength is increased, when the blast dust is mixed with PVC to the extent of 8.83wt % and impact strength is not significantly changed. From these results, it is suggested that blast dust containing CaO, SiO, MgO, $A1_2O_3$ and metallugical particle is compatible with PVC. Thermogravimetric analysis(TGA) showed that residual weight(%) at temperature $600^{\circ}C$ increased with the amount of blast dust and differential scanning calorimetry(DCS) showed that the thermal stability of PVC composite was increased when the weight ratio of blast dust was 8.83wt % X-ray diffractometry measurement also showed their blends and structures.

  • PDF

A study of particulate matters in Korea (우리나라 일부지역의 입자상 물질 농도에 대한 연구)

  • 손부순;공미연;박종안;양원호;김종오
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.4
    • /
    • pp.24-35
    • /
    • 2003
  • Recent epidemiologic studies revealed that the concentration of air pollutants and fine particulated matter have some effects on health status and are associated with increased mortality and morbidity. The purpose of this study was to characterize background mass concentration of fine particle (PM2.5) and metallic composition from September 2001 to August 2002 in comparison with a medium city, Asan and metropolitan city, Seoul. Conclusively, proper management for fine particles was required in a medium city, Asan, considering the concentrations of metallic elements in fine particles in Asan were relatively higher than those in Seoul. The results were as followed. 1. Average mass concentrations of fine particles in Asan and Seoul were 37.70(${\pm}18.41{\;}{\mu}g/\textrm{m}^3$) and 5.83(${\pm}38.50$) ${\mu}g/\textrm{m}^3$, respectively. When the weather conditions were classified as normal and yellow-sand, measured average mass concentrations of fine particles in yellow-sand weather condition was significantly higher than those of normal weather condition in both cities (p<0.05). 2. Depending on seasons, measured average mass concentrations of fine particles in Asan and Seoul in spring were 47.76(${\pm}19.07$) ${\mu}g/\textrm{m}^3$m and 61.53 (${\pm}4.37$) ${\mu}g/\textrm{m}^3$, respectively. In summer, the average mass concentrations of fine particles in Asan and Seoul were 29.44(${\pm}9.85$) ${\mu}g/\textrm{m}^3$ and 25.42(${\pm}8.10$) ${\mu}g/\textrm{m}^3$, respectively. Especially, the concentration was the highest in spring and the lowest in summer among four seasons. 3. Average concentrations of manganese(Mn), iron(Fe), chromium(Cr), cadmium(Cd), lead(Pb) and silicon(Si) in fine particles in Asan were significantly higher in Seoul (p<0.05). Average concentration of Si in fine particle in Asan was statistically higher than that of Seoul during yellow -sand condition (p<0.05). 4. Considering the characterization of four seasons, average Pb concentration of fine particle in Asan is significantly higher than that of Seoul in spring(p<0.01). In summer, average Mn and Cr concentrations of fine particle in Asan is higher than those of Seoul (p<0.05). Average Mn, Fe. Cr and Si concentrations in fall (p<0.05), and average Mn, Fe, Cr, Pb, and Si concentrations in winter (p<0.05) in Asan were higher than those of Seoul, respectively. 5. Mass concentrations of each Mn, Fe, Cd and Si in fine particles were significantly correlated with both cities. In normal weather condition, Mn, Cu and Si concentrations are statistically significant in Asan, while Mn, Fe, Cu and Si concentrations are statistically significant in Seoul. Mn, Fe and Si concentrations in both cities were statistically significant during yellow-sand weather.

Settling and Filtering Process for the Treatment of Fine Suspended Solids and Soluble Heavy Metals in H Mine Drainage (H 광산배수 내 미세부유물질 및 용해성 중금속의 제거를 위한 침전 및 여과 공법에 관한 연구)

  • Oh, Minah;Kim, WonKi;Kim, DukMin;Lee, SangHoon;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.102-111
    • /
    • 2012
  • Fine suspended solids generated effluence from treatment process of mine drainage could destroy environment as the aesthetic landscapes, and depreciate water quality. Therefore, the purpose of this research is focused on process development applied the actual field for controlling fine suspended solids and heavy metals, and so lab-scale test was performed for inducement of basic data. The mine drainage used in this research was sampled in H mine located Jeongseon-gun, Gangwon-do. Concentration of suspended solid, arsenic, iron and manganese was exceeded the standard of contaminant limitation for the clean water, and particle size of suspended solid was less than 10 m as fine particle. Although hydraulic retention time of mine drainage for effective settling was required more than 6 hours, hydraulic retention time would be increased in winter season when the settling efficiency could be reduced because of viscosity decreasing. Moreover, installed inclination plate helped to increase settling efficiency of suspended solid about 48 %. Filtering media that was the most effective removal of suspended solids and heavy metal was decided granular activated carbon of 1~2 mm was the optimal size.

Microbial Desulfurization of Coal by Iron-Oxidizing Bacteria Thiobacillus ferrooxidans in packed beds (철산화 박테리아 Thiobacillus ferrooxidans를 이용한 충전탑 반응기에서의 석탄의 생물학적 탈황)

  • 류희욱
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.124-130
    • /
    • 1999
  • To evaluate the technical of microbial coal desulfurization during the storage in coal dumps, microbial pyrite oxidation in a packed column reactor with Thiobacillus ferrooxidans has been investigated. For microbial desulfurization in a packed reactor system, coal particle size over 1.0 mm with uniform size distribution seems to be most suitable as fas as drainage behavior and accessability of pyrite are concerned. When coal samples of 1∼2 and 2∼4 mm particle size were size were used, about 32∼42% of pyritic sulfur was removed within 70 days. The rate of pyritic sulfur oxidation was in the range of 348∼803 mg S/kg coal ·d, and the sulfur removal rates in packed columns were about 15∼25% of those in suspension cultures. Without any circulation of liquid medium, microbial coal desulfurization could be possible by the inoculation of T. ferrooxidans along on the coal dump. It was concluded that a microbial percolation process is one of possible processes for the desulfurization of high sulfur coal during a long-term storage.

  • PDF

Morphology-dependent Nanocatalysis: Rod-shaped Oxides

  • Shen, Wenjie
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.130-131
    • /
    • 2013
  • Nanostructured oxides are widely used in heterogeneous catalysis where their catalytic properties are closely associated with the size and morphology at nanometer level. The effect of particle size has been well decumented in the past two decades, but the shape of the nanoparticles has rarely been concerned. Here we illustrate that the redox and acidic-basic properties of oxides are largely dependent on their shapes by taking $Co_3O_4$, $Fe_2O_3$, $CeO_2$ and $La_2O_3$ nanorods as typical examples. The catalytic activities of these rod-shaped oxides are mainly governed by the nature of the exposed crystal planes. For instance, the predominant presence of {110} planes which are rich in active $Co^{3+}$ on $Co_3O_4$ nanorods led to a much higher activity for CO oxidation than the nanoparticles that mainly exposed the {111} planes. The simultaneous exposure of iron and oxygen ions on the surface of $Fe_2O_3$ nanorods have significantly enhanced the adsorption and activation of NO and thereby promoted the efficiency of DeNOx process. Moreover, the exposed surface planes of these rod-shaped oxides mediated the reaction performance of the integrated metal-oxide catalysts. Au/$CeO_2$ catalysts exhibited outstanding stability under water-gas shift conditions owing to the strong bonding of gold particle on the $CeO_2$ nanorods where the formed gold-ceria interface was resistant towards sintering. Cu nanoparticles dispersed on $La_2O_3$ nanorods efficiently catalyzed transfer dehydrogenation of primary aliphatic alcohols based on the uniue role of the exposed {110} planes on the support. Morphology control at nanometer level allows preferential exposure of the catalytically active sites, providing a new stragegy for the design of highly efficient nanostructured catalysts.

  • PDF

Preparation of Core-Shell Structured Iron Oxide/Graphene Composites for Supercapacitors Application (코어-쉘 구조의 산화철/그래핀 복합체 제조 및 슈퍼커패시터 응용)

  • Lee, Chongmin;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.14 no.3
    • /
    • pp.65-72
    • /
    • 2018
  • Core-shell structured $Fe_3O_4/graphene$ composites were synthesized by aerosol spray drying process from a colloidal mixture of graphene oxides and $Fe_3O_4$ nanoparticles. The structural and electrochemical performance of $Fe_3O_4/graphene$ were characterized by the field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, cyclic voltammetry, and galvanometric discharge-charge method. Core-shell structured $Fe_3O_4/GR$ composites were synthesized in different mass ratios of $Fe_3O_4$ and graphene oxide. The composite particles were around $3{\mu}m$ in size. $Fe_3O_4$ nanoparticles were encapsulated with a graphene. Morphology of the $Fe_3O_4/graphene$ composite particles changed from a spherical ball having a relatively smooth surface to a porous crumpled paper ball as the content of GO increased in the composites. The $Fe_3O_4/GR$ composite fabricated at the weight ratio of 1:4 ($Fe_3O_4:GO$) exhibited higher specific capacitance($203F\;g^{-1}$) and electrical conductivity than as-fabricated $Fe_3O_4/GR$ composite.

Thermal and Hygroscopic Properties of Indoor Particulate Matter Collected on an Underground Subway Platform

  • Ma, Chang-Jin;Lee, Kyoung-Bin;Zhang, Daizhou;Yamamoto, Mariko;Kim, Shin-Do
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.228-235
    • /
    • 2015
  • In order to clarify the thermal and hygroscopic properties of indoor particulate matter (PM) in a semiclosed subway space, which is critically important for understanding of the distinctive particle formation processes as well as the assessment of their health effects, the size-resolved PMs (i.e., $PM_{2.5}$ and $PM_{10-2.5}$) were intensively collected on the platform of Miasageori station on the Seoul Subway Line-4. The elemental concentrations in soluble and insoluble fractions were determined by PIXE from the bulkily pretreated $PM_{2.5}$. The thermal and hygroscopic characteristics of individual particles were investigated via a combination of the unique pretreatment techniques (i.e., the high-temperature rapid thermal process and the water dialysis) and SEM-EDX analysis. Iron and calcium were unequaled in insoluble and soluble $PM_{2.5}$ fractions, respectively, with overwhelming concentration. The SEM-EDX's elemental net-counts for the pre- and post-pyrolyzed PMs newly suggest that magnesium and several elements (i.e., silica, aluminum, and calcium) may be readily involved in the newly generated subway fine PM by a high-temperature thermal processing when trains are breaking and starting. Through the water dialysis technique, it turned out that calcium has meaningful amount of water soluble fraction. Furthermore, the concentrations of the counter-ions associated with the calcium in subway $PM_{10-2.5}$ were theoretically estimated.

WLAN-based Indoor Positioning Algorithm Using The Environment Information Surround Access Points (AP 주변 환경 정보를 이용한 WLAN 기반 실내 위치추정 알고리즘)

  • Kim, Mi-Kyeong;Shin, Yo-Soon;Park, Hyun-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.551-560
    • /
    • 2011
  • Recently, There has been increasing concern about WLAN-based indoor positioning system. Most of the existing WLAN-based positioning systems use a fingerprinting method as a main approach. In the fingerprinting approach, the accuracy of the location of a mobile objects is proportional to the number of reference points. However, depending on the increasing number of reference points in the training phase, it requires more time and effort to create fingerprint database. To solve these problems, we propose the new indoor positioning algorithm that calculate the distance between a mobile objects and an AP using the information of surrounding environment WLAN based APs and applied the particle filter to the proposed algorithm in order to improve the accuracy of the estimated location in this paper. To implement this algorithm, at first environmental information database such as wall, iron door, glass door, partition etc. existing in the periphery of the AP should be established. The positioning use attenuation model and path loss model. Our experimental results with proposed algorithm are verified that the positioning accuracy was low but solved the problems with fingerprinting, compared with other positioning algorithms.

Effects of Nickel and Iron Oxide Addition by Milling under Hydrogen on the Hydrogen-Storage Characteristics of Mg-Based Alloys

  • Song, Myoung Youp;Baek, Sung Hwan;Park, Hye Ryoung;Mumm, Daniel R.
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.64-70
    • /
    • 2012
  • Samples of pure Mg, 76.5 wt%Mg-23.5 wt%Ni, and 71.5 wt%Mg-23.5 wt%Ni-5 wt%$Fe_2O_3$ were prepared by reactive mechanical grinding and their hydriding and dehydriding properties were then investigated. The reactive mechanical grinding of Mg with Ni is considered to facilitate nucleation and to shorten diffusion distances of hydrogen atoms. After hydriding-dehydriding cycling, the 76.5 wt%Mg-23.5 wt%Ni and 71.5 wt%Mg-23.5 wt%Ni-5 wt%$Fe_2O_3$ samples contained $Mg_2Ni$ phase. In addition to the effects of the creation of defects and the decrease in particle size, the addition of Ni increases the hydriding and dehydriding rates by the formation of $Mg_2Ni$. Expansion and contraction of the hydride-forming materials (Mg and $Mg_2Ni$) with the hydriding and dehydriding reactions are also considered to increase the hydriding and dehydriding rates of the mixture by forming defects and cracks leading to the fragmentation of particles. The reactive mechanical grinding of Mg-Ni alloy with $Fe_2O_3$ is considered to decrease the particle size.