• Title/Summary/Keyword: Iron particle

Search Result 359, Processing Time 0.025 seconds

Synthesis of Iron Oxide Using Ferrous and Ferric Sulfate (황산제일철과 황산제이철을 이용한 산화철 합성)

  • Eom, Tae-Hyoung;Tuan, Huynh Thanh;Kim, Sam-Joong;Suh, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.20 no.6
    • /
    • pp.301-306
    • /
    • 2010
  • The chemical formula of magnetite ($Fe_3O_4$) is $FeO{\cdot}Fe_2O_3$, t magnetite being composed of divalent ferrous ion and trivalent ferric ion. In this study, the influence of the coexistence of ferrous and ferric ion on the formation of iron oxide was investigated. The effect of the co-precipitation parameters (equivalent ratio and reaction temperature) on the formation of iron oxide was investigated using ferric sulfate, ferrous sulfate and ammonia. The equivalent ratio was varied from 0.1 to 3.0 and the reaction temperature was varied from 25 to 75. The concentration of the three starting solutions was 0.01mole. Jarosite was formed when equivalent ratios were 0.1-0.25 and jarosite, goethite, magnetite were formed when equivalent ratios were 0.25-0.6. Single-phase magnetite was formed when the equivalent ratio was above 0.65. The crystallite size and median particle size of the magnetite decreased when the equivalent ratio was increased from 0.65 to 3.0. However, the crystallite size and median particle size of the magnetite increased when the reaction temperature was increased from $25^{\circ}C$ to $75^{\circ}C$. When ferric and ferrous sulfates were used together, the synthetic conditions to get single phase magnetite became simpler than when ferrous sulfate was used alone because of the co-existence of $Fe^{2+}$ and $Fe^{3+}$ in the solution.

Analysis of Effect of Fuel Additive on Soot Suppression Using Laser Scattering Technique (광 산란 기술을 이용한 연료 첨가제의 그을음 억제 효과 분석)

  • Seo, Hyoungseock;Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.204-210
    • /
    • 2016
  • This paper presents an experimental analysis of the growth and oxidation processes of soot particles generated in an isooctane diffusive laminar flame due to incomplete combustion. The effects of iron-based diagnostics were employed to measure the elastic scattering light from soot particles in a flame at different flame heights, and the differential scattering coefficients were calculated through a calibration process. The growth and oxidation of soot particles in flame was investigated by comparing differential scattering coefficients, and the soot volume fraction was seen to decrease in the soot oxidation process. In the same manner, the differential scattering coefficients were calculated for iron-based fuel-additive seeded flame, and these coefficients were revealed to be smaller than those obtained in the fuel-additive unseeded flame. In addition, transmission through the radial direction of the flame was measured, and transmission in the soot oxidation regime was approximately 5% higher for the seeded flame. The propensity of the data coincided well with the differential scattering coefficients, and it can be concluded that the iron component of the fuel additive plays a crucial role as a catalyst, which eventually enhanced soot particle oxidation.

Effect of Iron Species in Mesoporous Fe-N/C Catalysts with Different Shapes on Activity Towards Oxygen Reduction Reaction

  • Kang, Taehong;Lee, Jiyeon;Kim, Jong Gyeong;Pak, Chanho
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.137-145
    • /
    • 2021
  • Among the non-precious metal catalysts, iron-nitrogen doped carbon (Fe-N/C) catalysts have been recognized as the most promising candidates for an alternative to Pt-based catalysts for the oxygen reduction reaction (ORR) under alkaline and acidic conditions. In this study, the nano replication method using mesoporous silica, which features tunable primary particle sizes and shape, is employed to prepare the mesoporous Fe-N/C catalysts with different shapes. Platelet SBA-15, irregular KIT-6, and spherical silica particle (SSP) were selected as a template to generate three different kinds of shapes of the mesoporous Fe-N/C catalyst. Physicochemical properties of mesoporous Fe-N/C catalysts are characterized by using small-angle X-ray diffraction, nitrogen adsorption-desorption isotherms, and scanning electron microscopy images. According to the electrochemical evaluation, there is no morphological preference of mesoporous Fe-N/C catalysts toward the ORR activity with half-cell configuration under alkaline electrolyte. By implementing X-ray photoelectron spectroscopy analysis of Fe and N atoms in the mesoporous Fe-N/C catalysts, it is possible to verify that the activity towards ORR highly depends on the portions of "Fe-N" species in the catalysts regardless of the shape of catalysts. It was suggested that active site distribution in the Fe-N/C is one important factor towards ORR activity.

Evaluation of High Temperature Particle Erosion Resistance of Vanadium-Boride Coating (Vanadium-Boride코팅의 고온 내입자침식성 평가)

  • Lee, E.Y.;Kim, J.H.;Jeong, S.I.;Lee, S.H.;Eum, G.W.
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.76-84
    • /
    • 2015
  • The components in ultra super critical (USC) steam turbine, which is under development for high efficient power generation, are encountering harsher solid particle erosion by iron oxide scales than ones in the existing steam turbines. Therefore, the currently used boride coating will not be able to hold effective protection from particle erosion in USC system and should be replaced by new particle erosion resistant coatings. One of the best protective coatings developed for USC steam turbine parts was found to be vanadium-boride (V-boride) coating which has a hardness of about 3000 HV, much higher than that of boride, 1600~2000 HV. In order to evaluate particle erosion resistance of the various coatings such as V-boride, boride and Cr-carbide coatings at high temperature, particle erosion test equipments were designed and manufactured. In addition, erosion particle velocity was simulated using FLUENT software based on semi-implicity method for pressure linked equations revised (SIMPLER). Based on experimental results of this work, the vanadium-boride coating was found to be superior to others and to be a candidate coating to replace the boride coating.

Hydrogen Storage Characteristics Using Redox of $M/Fe_2O_3$ (M = Rh, Ce and Zr) Mixed Oxides ($M/Fe_2O_3$ (M = Rh, Ce 및 Zr) 혼합 산화물의 산화-환원을 이용한 수소 저장 특성)

  • Ryu, Jae-Chun;Lee, Dong-Hee;Kim, Young-Ho;Yang, Hyun-Soo;Park, Chu-Sik;Wang, Gab-Jin;Kim, Jong-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.21-30
    • /
    • 2006
  • [ $M/Fe_2O_3$ ] (M=Rh, Ce and Zr) mixed oxides were prepared using urea method to develop a medium for chemical hydrogen storage by their redox cycles. And their redox behaviors by repeated cycles were studied using temperature programmed reaction(TPR) technique. Additives such as Rh, Ce and Zr were added to iron oxides in order to lower the reaction temperature for reduction by hydrogen and re-oxidation by water-splitting. From the results, concentration of urea used as a precipitant had little effect on particle size and reduction property of iron oxide. TPR patterns of iron oxide consisted of two reduction peaks due to the course of $Fe_2O_3\;{\rightarrow}\;Fe_3O_4\;{\rightarrow}\;Fe$. The results of repeated redox tests showed that Rh added to iron oxide have an effect on lowering the re-oxidation temperature by water-splitting. Meanwhile, Ce and Zr additives played an important role in prevention of deactivation by repeated cycles. Finally, Fe-oxide(Rh, Ce, Zr) sample added with Rh, Ce and Zr showed the lowest re-oxidation temperature by water-splitting and maintained high $H_2$ recovery in spite of the repeated redox cycles. Consequently, it is expected that Fe-oxide(Rh, Ce, Zr) sample can be a feasible medium for chemical hydrogen storage using redox cycle of iron oxide.

Behavior of Graphite and Formation of Intermetallic Compound Layer in Hot Dip Aluminizing of Cast Iron (주철 - 알루미늄 합금의 Hot Dip Aluminizing시 흑연 및 금속간화합물 층의 형성 거동)

  • Han, Kwang-Sic;Kang, Yong-Joo;Kang, Mun-Seok;Kang, Sung-Min;Kim, Jin-Su;Son, Kwang-Suk;Kim, Dong-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.31 no.2
    • /
    • pp.66-70
    • /
    • 2011
  • Hot dip aluminizing (HDA) is widely used in industry for improving corrosion resistance of material. The formation of intermetallic compound layers during the contact between dissimilar materials at high temperature is common phenomenon. Generally, intermetallic compound layers of $Fe_2Al_5$ and $FeAl_3$ are formed at the Al alloy and Fe substrate interface. In case of cast iron, high contact angle of graphite existed in the matrix inhibits the formation of intermetallic compound layer, which carry with it the disadvantage of a reduced reaction area and mechanical properties. In present work, the process for the removal of graphite existed on the surface of specimen has been investigated. And also HDA was proceeded at $800^{\circ}C$ for 3 minutes in aluminum alloy melt. The efficiency of graphite removal was increased with the reduction of particle size in sanding process. Graphite appears to be present both in the region of melting followed by re-solidification and in the intermetallic compound layer, which could be attributed to the fact that the surface of cast iron is melted down by the formation of low melting point phase with the diffusion of Al and Si to the cast iron. Intermetallic compound layer consisted of $Fe(Al,Si)_3$ and $Fe_2Al_5Si$, the layer formed at cast iron side contained lower amount of Si.

Effect of the Powder Characteristics of Iron Oxides on the Magnetic Properties of Sr-ferrite (산화철의 분체특성이 Sr-ferrite의 자기특성에 미치는 영향)

  • 조태식;김효준;최승덕;남효덕;염충진
    • Resources Recycling
    • /
    • v.7 no.4
    • /
    • pp.43-49
    • /
    • 1998
  • We investigated the effects of the powder characteristics of various domestic iron oxides (${\alpha}Fe_2O_3$) on the magnetic properties of Sr-ferrites The particle size and the distribution of iron oxides were classified hy three different rerinning methods, and greatly a affected on the magn$\xi$tic prope$\pi$ies and the mmphology of Sr-ferntes. The agglomeration of Ruthner iron oxides and the large particles of Chemirite (CY) above $0.80{\mu}\textrm{m}$ were degraded the prope며es of Sr-fcrrites. The optimal magnetic prope$\pi$ies of Srt territes, showing 68.2 emu/g of saturation magnetization and 4300 Oe of intrinsic coerClvity, were achieved at the following c conditions; Chemirite (P2EP) iron oxides of $0.14{\mu}\textrm{m}$ molar ratio of 5.8. and calcination of $1150^{\circ}C$/1 hr.

  • PDF

Fabrication of Metallic Particle Dispersed Ceramic Based Nanocomposite Powders by the Spray Pyrolysis Process Using Ultrasonic Atomizer and Reduction Process

  • Choa, Y.H.;Kim, B.H.;Jeong, Y.K.;Chae, K.W.;T.Nakayama;T. Kusunose;T.Sekino;K. Niibara
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.151-156
    • /
    • 2001
  • MgO based nanocomposite powder including ferromagnetic iron particle dispersions, which can be available for the magnetic and catalytic applications, was fabricated by the spray pyrolysis process using ultra-sonic atomizer and reduction processes. Liquid source was prepared from iron (Fe)-nitrate, as a source of Fe nano-dispersion, and magnesium (Mg)-nitrate, as a source of MgO materials, with pure water solvent. After the chamber were heated to given temperatures (500~$^800{\circ}C$), the mist of liquid droplets generated by ultrasonic atomizer carried into the chamber by a carrier gas of air, and the ist was decomposed into Fe-oxide and MgO nano-powder. The obtained powders were reduced by hydrogen atmosphere at 600~$^800{\circ}C$. The reduction behavior was investigated by thermal gravity and hygrometry. After reduction, the aggregated sub-micron Fe/MgO powders were obtained, and each aggregated powder composed of nano-sized Fe/MgO materials. By the difference of the chamber temperature, the particle size of Fe and MgO was changed in a few 10 nm levels. Also, the nano-porous Fe-MgO sub-micron powders were obtained. Through this preparation process and the evaluation of phase and microstructure, it was concluded that the Fe/MgO nanocomposite powders with high surface area and the higher coercive force were successfully fabricated.

  • PDF

Effects of Carbide Morphology and Heat Treatment on Abrasion Wear Resistance of Chromium White Cast Irons (합금크롬주철의 탄화물형상 및 열처리가 내마모성에 미치는 영향)

  • Yu, Sung-Kon;Matsubara, Yasuhiro
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.407-413
    • /
    • 2002
  • Eutectic high chromium cast irons containing 17%Cr and 26%Cr were produced for this research by making each of them solidify unidirectionally. Abrasion wear test against SiC or $Al_2$O$_3$bonded paper was carried out using test pieces cut cross-sectionally at several distances from the chill face of castings. The wear resistance was evaluated in connection with the parameters such as eutectic colony size($E_w$), area fraction of boundary region of the colony($S_B$) where comparatively large massive chromium carbides are crystallized and, average diameter of chromium carbides in the boundary region($D_c$). The wear rate($R_w$), which is a gradient of straight line of wear loss versus testing time, was influenced by the type and the particle size of the abrasives. The $R_w$ value against SiC was found to be larger than that against A1$_2$O$_3$under the similar abrasive particle size. In the case of SiC, the $R_w$ value increased with an increase in the particle size. The $R_w$ value also increased as the eutectic colony size decreased, and that of the 17%Cr iron was larger than that of the 26%Cr iron at the same $E_w$ value. Both of the $S_B$ and $D_c$ values were closely related to the $R_w$ value regardless of chromium content of the specimens. The $R_w$ values of the annealed specimens were greater than those of the as-cast specimens because of softened matrix structures. As for the relationship between wear rate and macro-hardness of the specimens, the hardness resulting in the minimum wear rate was found to be at 550 HV30.

Design simulation of magnetic separator for purification of silica sand (자력선별방식을 이용한 고순도 실리카 정제 최적화를 위한 전산모사)

  • Choi, Hyun-Jin;Jo, Young Min;Lee, Jun Yub;Kim, Sang Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.181-187
    • /
    • 2016
  • Silica is an essential material in the electronics industries of LCDs and OLEDs, which particularly require high purity. This study attempted to find the optimal design of a magnetic separator for silica sand containing iron compounds using CFD simulation. Three designs of magnetic separation were prepared and their efficiency was examined. As a result of the evaluation, the sufficient contact of particulate silica with the surface of magnetic emitters improved the magnetic separation effects. In addition, the loss of $SiO_2$ and the removal rate of $Fe_2O_3$ depended strongly on the particle size, flow rate and magnetic flux density. In addition, magnetic separation is quite effective for a particle size of $10{\mu}m$ with a 0.2 m/s flow rate.