• Title/Summary/Keyword: Iron ore

Search Result 247, Processing Time 0.037 seconds

Studies on the Skarn-type Ore Deposits and Skarn Minerals in Gyeongnam Province (경남지구(慶南地區)의 스카른형(型) 광상(鑛床)의 성인(成因)과 스카른광물(鑛物)에 관(關)한 연구(硏究))

  • Woo, Young Kyun;Lee, Min Sung;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.15 no.1
    • /
    • pp.1-16
    • /
    • 1982
  • Many skarn type iron ore deposits are distributed in Kimhae-Mulgeum area of Gyeongnam Province. Integrated field, mineralogic, geochemical and fluid inclusion studies were undertaken to illustrate the character and origin of the ores in this area. The iron ore deposits in this area are NS or NNE trending fracture filling magnetite veins which are developed in andesitic rocks near the contact with late Cretaceous micrographic granite bodies. Symmetrically zoned skarns are commonly developed in the magnetite veins of this area. Zoning of skarn from center to margin of the vein are as follows; garnet quartz skarn-epidote skarn-epidote orthoclase skarn-altered andesitic rocks. Major ore mineral is magnetite and small amount of hematite, pyrite, pyrrhotite, chalcopyrite and sphalerite are associated. Vein paragenesis reveals four depositional stages; 1) skarn stage, 2) iron sulfide and oxide stage, 3) skarn stage, 4) sulfide stage Minute halite-bearing polyphase inclusions and liquid inclusions are contained in quartz. Filling temperatures range from $257^{\circ}$ to $370^{\circ}C$.

  • PDF

A Comparative Analysis of the Forecasting Performance of Coal and Iron Ore in Gwangyang Port Using Stepwise Regression and Artificial Neural Network Model (단계적 회귀분석과 인공신경망 모형을 이용한 광양항 석탄·철광석 물동량 예측력 비교 분석)

  • Cho, Sang-Ho;Nam, Hyung-Sik;Ryu, Ki-Jin;Ryoo, Dong-Keun
    • Journal of Navigation and Port Research
    • /
    • v.44 no.3
    • /
    • pp.187-194
    • /
    • 2020
  • It is very important to forecast freight volume accurately to establish major port policies and future operation plans. Thus, related studies are being conducted because of this importance. In this paper, stepwise regression analysis and artificial neural network model were analyzed to compare the predictive power of each model on Gwangyang Port, the largest domestic port for coal and iron ore transportation. Data of a total of 121 months J anuary 2009-J anuary 2019 were used. Factors affecting coal and iron ore trade volume were selected and classified into supply-related factors and market/economy-related factors. In the stepwise regression analysis, the tonnage of ships entering the port, coal price, and dollar exchange rate were selected as the final variables in case of the Gwangyang Port coal volume forecasting model. In the iron ore volume forecasting model, the tonnage of ships entering the port and the price of iron ore were selected as the final variables. In the analysis using the artificial neural network model, trial-and-error method that various Hyper-parameters affecting the performance of the model were selected to identify the most optimal model used. The analysis results showed that the artificial neural network model had better predictive performance than the stepwise regression analysis. The model which showed the most excellent performance was the Gwangyang Port Coal Volume Forecasting Artificial Neural Network Model. In comparing forecasted values by various predictive models and actually measured values, the artificial neural network model showed closer values to the actual highest point and the lowest point than the stepwise regression analysis.

Process Modeling of an Iron Ore Sintering Bed for Flue Gas Recirculation (배가스 재순환 적용을 위한 제철 소결 베드 프로세스 모델링)

  • Ahn, Hyung-Jun;Choi, Sang-Min;Cho, Byung-Kook
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.4
    • /
    • pp.23-30
    • /
    • 2011
  • In the iron and steel manufacturing, sintering process precedes blast furnace to prepare feed materials by agglomerating powdered iron ore to form larger particles. There are several techniques which have devised to improve sintering production and productivity including flue gas recirculation(FGR) and additive gas enriched operation. The application of those techniques incurs variations of process configurations as well as inlet and outlet gas conditions such as temperature, composition, and flow rate which exert direct influence on reactions in the bed or the operation of the entire plant. In this study, an approach of sintering bed modeling using flowsheet process simulator was devised in consideration of FGR and the change of incoming and outgoing gas conditions. Results of modeling for both normal and FGR sintering process were compared in terms of outgoing gas temperature, concentration, and moisture distribution pattern as well as incoming gas conditions. It is expected to expand the model for various process configurations with FGR, which may provide the usefulness for design and operation of sintering plant with FGR.

Production of High-purity Magnetite Nanoparticles from a Low-grade Iron Ore via Solvent Extraction

  • Suh, Yong Jae;Do, Thi May;Kil, Dae Sup;Jang, Hee Dong;Cho, Kuk
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.39-45
    • /
    • 2015
  • We produced magnetite nanoparticles (MNPs) and a Mg-rich solution as a nano-adsorbent and a coagulant for water treatment, respectively, using a low-grade iron ore. The ore was leached with aqueous hydrochloric acid and its impurities were removed by solvent extraction of the leachate using tri-n-butyl phosphate as an extractant. The content of Si and Mg, which inhibit the formation of MNPs, was reduced from 10.3 wt% and 15.5 wt% to 28.1 mg/L and < 1.4 mg/L, respectively. Consequently, the Fe content increased from 68.6 wt% to 99.8 wt%. The high-purity $Fe^{3+}$ solution recovered was used to prepare 5-15-nm MNPs by coprecipitation. The wastewater produced contained a large amount of $Mg^{2+}$ and can be used to precipitate struvite in sewage treatment. This process helps reduce the cost of both sewage and iron-orewastewater treatments, as well as in the economic production of the nano-adsorbent.

Changes of Gas Conditions of Iron Ore Sintering Process with FGR (제철 소결의 배가스 순환 적용에 따른 가스 조건 변화)

  • Ahn, Hyungjun;Choi, Sangmin;Cho, Byungkook
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.19-20
    • /
    • 2012
  • Flue gas recirculation(FGR) is applied to sintering process to cope with issues including plant efficiency and environmental effects. However, it inevitably brings changes of incoming and outgoing gas conditions as plant configurations. Objective of this study was to build a process model for a sintering bed using a flowsheet process simulator and obtain information of mass and heat balance for gas flows over various process configurations with FGR.

  • PDF

Modeling Approach of Solid Particle Bed for the Combustion Environment Control (고체 입자 베드 내 반응 환경 변화를 위한 모델링 접근 방법)

  • Ahn, Hyungjun;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.21-23
    • /
    • 2013
  • Various solid particle materials are treated in the industrial processes including fixed-beds or moving grate beds, and modeling approaches have been widely applied to the processes to predict and evaluate their performance. For this study, the modeling approach was applied to iron ore sintering process with various improvement measures. Based on the previous modeling approach, the changes and effects of the improvement measures were discussed at the point of controlling the combustion environment in the bed.

  • PDF

The Optimal Resource Development for Analysing Data of Deposit Types' Ore Reserves of Oversea Metal Resource (해외 금속자원에 대한 광상유형별 자료 분석을 통한 효과적인 자원개발)

  • Yoo, Bong-Chul;Lee, Jong-Kil;Lee, Gil-Jae;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.773-795
    • /
    • 2008
  • The major import minerals of South Korea are copper ore, lead-zinc ore, iron ore, manganese ore and molybdenum ore. Oversea resources development of South Korea have 92 projects in 14 nations of Asia, 29 projects in 10 nations of America and Europe, and 14 projects in 9 nations of Middle Asia and Africa. But, most projects of them are found in Australia, China, Mongolia and Indonesia. The most projects of the Australia, China and Indonesia are interested in coal and a little projects of them have manganese, iron, lead-zinc, nickel, copper, gold, molybdenum, rare earth elements and uranium. The most projects of the Mongolia are interested in gold and rare earth elements. Representative ore deposits models of metal resources are Orogenic lode deposits, Volcanogenic massive sulphide deposits, Porphyry deposits, Sedimentary exhalative deposits, Mississippi valley type deposits, Iron oxide copper-gold deposits and Magmatic nickel-copper-platinum group element deposits based on global distribution, reverses and grades of their deposits models. If oversea mineral resources will be examined the mineral reserves, mineral mine production and ore deposits models of nations and then survey and investigate of mineral resources, we may be maintained ore body of high grade at survey area and decrease the investment risk.

Genesis of Iron Ore Deposits in the south-eastern Part of Gyeongnam Porvince, Korea (경남(慶南) 동남부지역(東南部地域) 철광상(鐵鑛床)의 성인(成因)에 관(關)한 연구(硏究))

  • Woo, Young-Kyun
    • Economic and Environmental Geology
    • /
    • v.21 no.1
    • /
    • pp.45-56
    • /
    • 1988
  • Many hydrothermal skarn-type iron ore deposits inchiding Mulgeum, Yangseong, Maeri and Kimhae mines are distributed in the south-eastern Gyeongnam Province, Korea. The deposits are magnetite veins which occurred in propylitized andesitic rock near the contact with late Cretaceous Masanite. Symmetrical zoned skarns are commonly developed around the magnetite veins. The order of the skarn zones from the vein is garnet-quartz skarn, epidote skarn, and epidote-orthoclase skarn. The garnets include isotropic or anisotropic andradite($Ad_{100{\sim}70}$), and the epidotes are composed of pistacite($Ps_{21-31}$). Fe contents of the epidotes generally increase toward the magnetite veins. Epidotes and garnets often show compositional variations from grain to grain, that is, their Fe and Al contents vary inversely. This suggests that the variations depend mainly upon $fo_2$ during the skarnization. Oxygen and carbon isotope analyses of minerals from andesitic rock, micrographic granite, major skarn zones and post-mineralization zones were conducted to provide the information on the formation temperature, the origin and the evolution of the hydrothermal solution forming the iron ore deposits. Becoming more distant from the ore vein, temperatures of skarn zones represent the decreasing tendency, but most ${\delta}O^{18}$ and ${\delta}O^{18}_{H_2O}$ values of skarn minerals represent no variation trend, and also the values are relatively low. Judging from all the isotopic data from the ore deposits, the major source of hydrothemal solution altering the skarn zones and precipitating the ore bodies was magmatic water derived from the more deeply seated micrographic granite. This high temperature hydrothermal solution rising through the fissures of propylitized andesitic rock was mixed with some meteoric water, and the extensive isotopic exchange occurred with the propylitized andesitic rock. During this process, the temperature and ${\delta}O^{18}_{H_2O}$ value of hydrothermal solution were lowered gradually. At the stage of iron ore precipitation, because after all the alteration was already finished, the oxygen isotopic exchange with the wall rock was nearly not taken. The relatively high ${\delta}O^{18}$ and ${\delta}O^{18}_{H_2O}$, and relatively low ${\delta}C^{13}$ values of calcites of post mineralization stage, are the results of leaching of the high ${\delta}O^{18}$ chert xenolith in the andesitic rock and low ${\delta}C^{13}$ andesitic rock.

  • PDF

Removal of Iron Bearing Minerals from Illite (일라이트에 함유된 Fe 불순물 제거)

  • Kim, Yun-Jong;Cho, Sung-Baek;Park, Hyun-Hae;Kim, Sang-Bae
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.497-502
    • /
    • 2006
  • Recently, many attention have been focused on illite as a material for the well-being industry. Illite contains various kinds of iron bearing materials and they restrict their usage. In this study, Fe impurities in the illite produced in Yeongdong-gun, Chungcheongbuk-do were characterized and their removal experiments were performed. According to the characterization of illite raw ore, it contained 1.54 wt.%$Fe_2O_3$ due to the existence of iron oxide($Fe_2O_3$) and pyrite($FeS_2$). The raw ore was crushed into 3 mm or less using cone crusher and then ground by rod mill for the liberation of impurity mineral. For the removal of iron bearing minerals, an acid treatment, a flotation, a magnetic separation, and a flotation combined with magnetic separator were performed respectively. When the illite raw ore was treated with magnetic separation and various kinds of acid, 1.54wt.%. $Fe_2O_3$ content was reduced to 0.78 and 1.0 wt.%, respectively. On the other hand $Fe_2O_3$ content was reduced to be 0.52 wt.% after flotation. These results indicate that iron bearing minerals cannot be reduced below 0.3wt.%$Fe_2O_3$. However, combination of magnetic separation and flotation enable us to get 0.24wt.% of illite concentrate. It is concluded that, for the refinement of illite from Yeongdong-gun, the flotation combined with magnetic separation is good for high purity illite.