• Title/Summary/Keyword: Iron manufacture

Search Result 110, Processing Time 0.028 seconds

A Study on Iron-manufacture Method through Analysis of Ironware excavated from Byeokje, Goyang (고양 벽제 제철 유구 출토 철기의 분석을 통한 제철방법 연구)

  • Lim, Ju-Yeon;Kim, Soo-Ki
    • Journal of Conservation Science
    • /
    • v.28 no.4
    • /
    • pp.367-376
    • /
    • 2012
  • The ironware production technology is a measure to fathom the society's level of development in time. To understand iron-manufacure methods in the past, various investigations on the fine structures and additions of ironware remains and Iron ingot have been conducted in a way of natural science. This study metallurgically reclassifies remains excavated in iron-manufacture remains located in Beokje, Goyang, which are thought to be in time of Goryeo Dynasty, and draws an inference from the element analysis on the iron-manufacture and smelting technology. Iron ingot samples with a cast iron structure are divided into those with a white cast iron structure and those with a grey cast iron rich in P. The P content of grey cast iron appeared to be the result of adding a flux agent like lime, iron ingot and carbon steel iron ingot with a cast iron structure excavated in the area is regarded as pig iron which was made without a refining process. In this study it seems that two methods of making ironware were used in the area; one is the method of making ironware by pouring cast iron to the casting, and the other is the method of making carbon steel through the refinement of pig iron. It appears that highly even steel structure of carbon steel and a small amount of MnS inclusion are very similar with that of the modern steel to which Mn is artificially added. Nevertheless, these data alone cannot be used to determine the source of Mn in the carbon steel of the excavated from the iron-manufacture remains, which raises the need for further studies on the source and the possibility of carbon steel via the iron-manufacture process of cast iron.

Deduction of Main Hazard Cause to the Progress of Iron Work for Accident Analysis (재해사례 분석을 통한 제철소 공정별 주요위험요인 도출)

  • Hong, Sung-Man;Park, Peom;Sun, Su-Bin
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.3
    • /
    • pp.33-40
    • /
    • 2009
  • Steel and iron manufacture works exist that many latency risk as melting liquid of high temperature, work of high place, and so on. Once in a while, the accident case make use of basic data for latency risk analysis in a place of business. In this paper, we investigated the cause of the accident in steel an iron works. The result, we came across that many latency risk in steel and iron manufacture works. The main type of risk are fall, narrow, come flying, etc. Most of the latency risk type are repetition and conventional accident. Accordingly, steel and manufacture works must prevent to repetition and conventional accident.

Proposals on How to Research Iron Manufacture Relics (제철유적 조사연구법 시론)

  • Kim, Kwon Il
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.3
    • /
    • pp.144-179
    • /
    • 2010
  • Investigation into iron manufacture relics has been active since 1970s, especially accelerated in 1990s across the country. Consideration of the importance of production site relics has lately attracted attention to iron manufacture relics. Methodological studies of the investigation into iron manufacture relics, however, were less made compared with those of the investigation into tomb, dwelling, or swampy place relics. It is because the process of iron manufacture is too complicated to understand and also requires professional knowledge of metal engineering. With the recognition of these problems this research is to form an opinion about how to excavate, to rearrange and classify, and to examine iron manufacture relics, based upon the understanding of the nature of iron, iron production process, and metal engineering features of related relics like slag, iron lumps and so on. This research classifies iron manufacture relics into seven types according to the production process; mining, smelting, refining, tempering, melting, steelmaking, and the others. Then it arranges methods to survey in each stage of field study, trial digging, and excavation. It also explains how to classify and examine excavated relics, what field of natural science to be used to know the features of relics, and what efforts have been made to reconstruct a furnace and what their problems were, making the best use of examples, drawings, and photos. It comes to the conclusion, in spite of the lack of in-depth discussion on application and development of various investigation methods, that iron manufacture relics can be classified according to the production process, that natural sciences should be applied to get comprehensive understanding of relics as well as archeological knowledge, and that efforts to reconstruct a furnace should be continued from the aspect of experimental archeology.

Research on the ancient iron technology of Jungwon, the center of iron industry (제철산업의 중심 중원에서 고대 제철기술을 탐구하다)

  • Do, Eui Chul;Lee, Eun Woo;Seok, Je Seop;Jang, Min Seong
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.1
    • /
    • pp.148-165
    • /
    • 2015
  • Iron was one of the most influential factors for formation and development of ancient countries. The diffusion of ironware had increased agricultural productivity and brought about military technical revolution. Needless to say, the rise and fall of the countries depended on the possession of stable iron production. Raw materials and fuels are the key factors for mass production of iron and a transportation route is essential to supply the goods. Jungwon area satisfies the three factors. There are many iron manufacture sites such as Jincheon Seokjang-ri Gusan-ri, and Chunju Chilgeum-dong Tangeumdae earthen ramparts in the Jungwon area. In order to study the ancient iron manufacture technique, reconstitution experiment was carried out using restored furnace which was made based on the Jincheon Seokjang-ri B-23 furnace. Some notable results were identified with the experiment as in the followings. Firstly, a roasting process has a connection with the decrease of hardness of the iron ore. Secondly, melting of the blast pipe as well as the formation of product within the furnace had a crucial effect on the cessation of the experiment. Thirdly, reduced iron in various locations within the furnace prove that there was enough reducing environment during the working. Not only melting point but also properties of iron can vary depending on the carbon contents. For the reason, formation of approximate environment in which iron can react to the chalcoal is the most important factor in terms of iron manufacture.

Microstructure investigation of iron artifacts excavated from No. 3 tomb of Bogam-ri in Naju City, Chollanam-do Province (나주 복암리 3호분 출토 철제유물의 금속학적 조사)

  • Yu, Jae-Eun;Go, Hyeoung-Sun;Hwong, Jin-Ju
    • 보존과학연구
    • /
    • s.22
    • /
    • pp.115-132
    • /
    • 2001
  • No. 3 Tomb of Bogam-ri, in Naju City, Chollanam-do Province, was a site excavated and inspected from 1996 to 1998 and had a various grave forms, including jar-coffins, stone-chambers and stone-cists. Although most of the metal artifacts excavated from it were severely corroded, we could implement microstructure investigation by collecting samples from the iron axes, iron coffin-nails and iron clamps in which the metal parts were remained. The metal structures were inspected by using metallographic microscope and SEM, and fine components analysis was implemented by ICP. To examine the hardness differences in accordance with the structure distribution, we measured the hardness by structures with Vickers hardness testing machine. As a result of the metal structure inspection, most of them were pure iron, ferrite, and also pearlite, cementite and widmannstaten structures were displayed. We could confirm carbonization was formed on the surface of the iron axes-B, iron coffin-nails-B, and iron clamps-A. There was no carbonization in the rest of the artifacts, and it is not certain that whether the carbonized parts were peeled off through extreme corrosion or they were not carbonized when they were made. In the particular part of a blade, the quality of the material was strengthened through processing. Due to the processing re-grain was caused and fine grain particles were formed. As a result of the ICP component analysis, there were no addition atoms because pure irons were used as materials. In the mean time, No. 17 jar-coffin where the iron axes-A are excavated, is chronologically ordered as from the late-fourth century to the mid-fifth century, and No. 1 and No. 2 stone chambers, where the rest of the artifacts were excavated, as the early-sixth century. It was difficult to relate the periodic differences with the manufacture technique artifacts which we inspected because there were no distinct characteristics of the manufacture technique of the metal structures and it is impossible to conclude the artifacts and sites are at the same period although their periods are different.

  • PDF

A Study on the Quality Control of Nodular Graphite Cast Iron (구상흑연주철의 품질관리에 관하여)

  • 강경식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.5 no.6
    • /
    • pp.55-62
    • /
    • 1982
  • Mechanical characteristics of nodular graphite cast iron has found to tan higher utilization to the gray cast iron. So, Nodular graphite cast iron is used as a basic material in mechanical industry. Great demand of Nodular graphite cast iron is expected to increase due to the sharp development in mechanical and automobile industry. Therefore, Nodular graphite cast iron requires not only good quality product but experienced skills in manufacturing process. But there exist a lot of difficulties to manufacture nodular graphite cast iron than gray cast iron in manufacturing process. In this study, the following topics are studied for good quality product of nodular graphite cast iron. $\circled1$ Activities of managerial staff. $\circled2$ Qualite control method in manufacturing process. $\circled3$ Manufacturing process system. As a result of the study, a intensive Quality control activities should be applied and reinforced at each stage of manufacturing process rather that at the last stage of final product.

  • PDF

Study on the Design and Manufacture of Solid Iron Motors (괴상 철심 전동기의 설계 및 시작에 관한 연구)

  • 이윤종;백수현
    • 전기의세계
    • /
    • v.27 no.4
    • /
    • pp.52-59
    • /
    • 1978
  • This paper is prepaped, based upon its foundation of the design, first studying the rotor impedance of single and double layer cylindrical induction motor with solid iron rotor, and then inducing torque equation, from it. Classified were some design factors for this design from the result for above and there carried out the evidence of these design and theory after making experimental motors with solid iron rotors and examining torque characteristics.

  • PDF

Microstructure investigation of iron artifacts excavated from Sungseonsa Temple in Chungju city (충주 숭선사지 출토 철제유물의 미세조직 분석)

  • Yu, Jae-Eun;Go, Hyeong-Sun;Yi, Jae-Seong
    • 보존과학연구
    • /
    • s.24
    • /
    • pp.187-213
    • /
    • 2003
  • Sungseonsa Temple site in Chungju city in Chungcheongbuk-doProvince is written in "Goryeosa" as a building for Queen Sinmyeongsunseong, the mother of Gwangjong in AD 954 in Goryeo Dynasty. The museum in Chungcheong University takes charge of the excavation for 3 times from 2000 to 2002 and identified that its construction was carried out till Joseon Dynasty. Among the iron artifacts from the first excavation such as a weeding hoe, a hand knife, a lock, two nails and a plow which had conservation treatments, the sample was collected. Its micro-structure and method of manufacture were investigated. Excavation report for those artifacts has not published yet, therefore, the date of each artifacts is not clearly confirmed. The samples were collected from each part of the objects and then embedded in epoxy resin and etched with nitric acid. The examination of its microstructure is carried out under the microscope and the hardness values were measured by Vickers hardness tester. From the results, some artifacts show different manufacture method sin the each parts. The forming processes of the iron weeding hoe and the iron sickle are similar but the blade of iron weeding hoe was strengthened by carbonization whereas the blade of the iron sickle was done by quenching. The hand knife and the nails were produced through almost same methods and shows similar microstructures. The hand knife seems to be made by repeated beating and folding in low temperature resulting in fine crystallization, but the nail shows large crystallization due to processes in high temperature. Lock is made of white cast iron, that does not show any heat treatment.

  • PDF

Scientific Analysis of Iron Making By-Products Excavated from Gogi-ri, Namwon, Korea

  • Bae, Chae Rin;Kwon, In Cheol;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.37 no.1
    • /
    • pp.34-42
    • /
    • 2021
  • This study analyzes six slags excavated from the iron making site in Gogi-ri, Namwon, Korea to understand the characteristics of the ruins, and to confirm the iron making process performed at the time. The chemical components of the iron making by-products from the Gogi-ri site were analyzed, and the findings indicate total Fe contents between 23.24% and 37.56%, which are lower than the typical total Fe content found in ancient iron making processes. The deoxidation agent contents of the slags ranged from 43.88% to 58.13%, which are higher than the typical deoxidation agent content of ancient iron making processes. The high content suggests smooth separation between iron and slags, and TiO2 detected from the site suggests the use of materials with high titanium content in the iron making in the region. As for the microstructures of the slags, some slags have long pillar-shaped fayalites, while others have pillar-shaped wüstite along with ulvöspinel. Slags from the forging furnace show hammer scales created by both the earlier stages and later stages of forging work. The findings suggest that the iron making site in Gogi-ri, Namwon, Korea used to be an iron making facility where a full range of iron making process was carried out ranging from smelting to forging, and the ironmakers used a wide array of technologies to manufacture iron products.

Analysis of Reducing Characteristics of Direct Reduced Iron using Blast Furnace Dust

  • Yun, Young Min;Chu, Yong Sik;Seo, Sung Kwan;Jeong, Jae Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.444-449
    • /
    • 2016
  • Industrial by-products generated by integrated iron and steel manufacture cause environmental pollution. The by-products contain not only iron element but also harmful substances. Therefore, in view of to waste recycling and environmental preservation, production of sponge iron using the by-product is considered an effective recycling method. In this study, reduction efficiency of pellets from blast furnace dust was measured. Metallization was found to be increased, as $C/Fe_{total}$ ratio and reaction time were increased. The pellets were formed into a globular shape, and calcined for 60 minutes at $1100^{\circ}C$ in an electric furnace. Phase changes were analyzed using an X-ray diffractometer. Microstructures of the pellets were observed by a scanning electron microscope.