• 제목/요약/키워드: Iron loading

검색결과 72건 처리시간 0.023초

Failure of circular tunnel in saturated soil subjected to internal blast loading

  • Han, Yuzhen;Liu, Huabei
    • Geomechanics and Engineering
    • /
    • 제11권3호
    • /
    • pp.421-438
    • /
    • 2016
  • Explosions inside transportation tunnels might result in failure of tunnel structures. This study investigated the failure mechanisms of circular cast-iron tunnels in saturated soil subjected to medium internal blast loading. This issue is crucial to tunnel safety as many transportation tunnels run through saturated soils. At the same time blast loading on saturated soils may induce residual excess pore pressure, which may result in soil liquefaction. A series of numerical simulations were carried out using Finite Element program LS-DYNA. The effect of soil liquefaction was simulated by the Federal Highway soil model. It was found that the failure modes of tunnel lining were differed with different levels of blast loading. The damage and failure of the tunnel lining was progressive in nature and they occurred mainly during lining vibration when the main event of blast loading was over. Soil liquefaction may lead to more severe failure of tunnel lining. Soil deformation and soil liquefaction were determined by the coupling effects of lining damage, lining vibration, and blast loading. The damage of tunnel lining was a result of internal blast loading as well as dynamic interaction between tunnel lining and saturated soil, and stress concentration induced by a ventilation shaft connected to the tunnel might result in more severe lining damage.

비정질 인산알루미늄 철의 표면 성질 및 촉매 특성: 함유된 철의 양에 의한 효과 (Surface Properties and the Catalytic Activity of Amorphous Iron Aluminophosphates: Effect of Fe Loading)

  • Vijayasankar, A.V.;Aniz, C.U.;Nagaraju, N.
    • 대한화학회지
    • /
    • 제54권1호
    • /
    • pp.131-136
    • /
    • 2010
  • 다양한 철 원소의 조성을 갖는 인산알루미늄 철을 합성하여 표면 성질과 벌크 성질을 조사하였다. 벤질 알코올과 디에틸 말론산의 transesterification반응에 의해 촉매 특성을 결정 하였다. 에틸 벤질 말론산과 디벤질 말론산을 유일한 생성물로 얻었다. 철 성분이 0.025 몰 퍼센트인 FeAlP의 경우에 특이한 촉매 특성과 조직상의 특성이 나타난다. 디에스터의 형성은 중간 정도 크기의 산성 자리에서 이루어진다. 물질 안에 수화된 알루미나와 polycondensed인산이 존재할 경우에는 에스터교환 반응에서 인산 알루미늄 철의 촉매 특성이 감소하게 된다.

운동수행과 한약제 투여가 실험쥐의 적혈구, Serum Iron, Ferritin, Transferrin의 변화에 미치는 영향 (Effects of Nutrition Supplement on Erythrocyte, Serum Iron, Ferritin and Transferrin in Rats)

  • 정홍용;송제호
    • 동의생리병리학회지
    • /
    • 제20권3호
    • /
    • pp.638-641
    • /
    • 2006
  • Iron is the required microelement supporting life and is the main component of hemoglobin. Thus iron has affinity with exercise capacity. Iron metabolism turbulence induced by exercise is one of causes of hematopoietic hypofunction. Results of the experiment showed that long-term treadmill exercise of progressive loading significantly decreased levels of erythrocyte indexes, serum iron, serum ferritin and significantly increased serum transferrin level. Nutrition supplement could significantly retard the variations, and Exercise +Nutrition group have higher levels of erythrocyte indexes, serum iron, serum ferritin and lower level of serum transferrin than Exercise group. The results indicated that nutrition supplement have function of prevent and cure on iron metabolism turbulence induced by exercise, furthermore significantly enhance hemoglobin level in rats.

Optimal Metal Dose of Alternative Cathode Catalyst Considering Organic Substances in Single Chamber Microbial Fuel Cells

  • Nam, Joo-Youn;Moon, Chungman;Jeong, Emma;Lee, Won-Tae;Shin, Hang-Sik;Kim, Hyun-Woo
    • Environmental Engineering Research
    • /
    • 제18권3호
    • /
    • pp.145-150
    • /
    • 2013
  • Optimal preparation guidelines of a cathode catalyst layer by non-precious metal catalysts were evaluated based on electrochemical performance in single-chamber microbial fuel cells (MFCs). Experiments for catalyst loading rate revealed that iron(II) phthalocyanine (FePc) can be a promising alternative, comparable to platinum (Pt) and cobalt tetramethoxyphenylporphyrin (CoTMPP), including effects of substrate concentration. Results showed that using an optimal FePc loading of $1mg/cm^2$ was equivalent to a Pt loading of $0.35mg/cm^2$ on the basis of maximum power density. Given higher loading rates or substrate concentrations, FePc proved to be a better alternative for Pt than CoTMPP. Under the optimal loading rate, it was further revealed that 40 wt% of FePc to carbon support allowed for the best power generation. These results suggest that proper control of the non-precious metal catalyst layer and substrate concentration are highly interrelated, and reveal how those combinations promote the economic power generation of single-chamber MFCs.

Development of Superparamagnetic Iron Oxide Nanoparticles (SPIOs)-Embedded Chitosan Microspheres for Magnetic Resonance (MR)-Traceable Embolotherapy

  • Kang, Myung-Joo;Oh, Il-Young;Choi, Byung-Chul;Kwak, Byung-Kook;Lee, Jae-Hwi;Choi, Young-Wook
    • Biomolecules & Therapeutics
    • /
    • 제17권1호
    • /
    • pp.98-103
    • /
    • 2009
  • Superparamagnetic iron oxide nanoparticles (SPIOs)-embedded chitosan microspheres were developed for magnetic resonance (MR)-traceable embolotherapy. SPIOs-loaded chitosan microspheres were prepared by emulsion and cross-linking technique and 100-200 ${\mu}m$ sized spherical microsparticles were obtained. Loading efficacy and loading amount of SPIOs in microspheres were about 40% and 0.26-0.32%, respectively, when measured by inductively coupled plasma atomic emission spectroscopy. Within 30 days, about 60% of the incorporated SPIOs were released from low cross-linked microspheres, whereas only about 40% of SPIOs was released from highly cross-linked microspheres. Highly cross-linked microspheres were more efficient for lower degree of swelling leading to secure entrapment of SPIOs in matrix. Prepared novel embolic microspheres are expected to be practically applicable for traceable embolotherapy with high resolution and sensitivity through magnetic resonance imaging (MRI).

철계 형상기억합금을 이용한 콘크리트 기둥의 전단보강 실험연구 (Experimental Study on Shear Retrofitting of Concrete Columns Using Iron-Based Shape Memory Alloy)

  • 정동혁;정새벽;최재희;김근오
    • 한국지진공학회논문집
    • /
    • 제28권1호
    • /
    • pp.41-46
    • /
    • 2024
  • The current study investigates the seismic performance of shear-dominant RC columns retrofitted with iron-based shape memory alloy (Fe SMA). Three RC columns with insufficient transverse reinforcement were designed and fabricated for lateral cyclic loading tests. Before testing, two specimens were externally confined with carbon fiber-reinforced polymer (CFRP) sheets and self-prestressed Fe SMA strips. The test results showed that both CFRP and Fe SMA performed well in preventing severe shear failure exhibited by the unretrofitted control specimen. Furthermore, the two retrofitted specimens showed ductile flexural responses up to the drift ratios of ±8%. In terms of damage control, however, the Fe SMA confinement was superior to CFRP confinement in that the spalling of concrete was much less and that the rupture of confinement did not occur.

극저사이클 하중을 받는 구상흑연주철의 초가균열성장에 관한 연구 (A Study on the Initial Crack Growth in Spheroidal Graphite Cast Iron under Extremely Low Cycle Loading)

  • 김민건;임복규;김동열
    • 산업기술연구
    • /
    • 제22권A호
    • /
    • pp.3-8
    • /
    • 2002
  • In this study, extremely low cycle fatigue tests were carried out under push-pull loading conditions using graphite cast iron (GCD). In order to clarify the fatigue fracture mechanism of GCD in an extremely low cycle fatigue regime successive observations of internal fatigue damage were performed. The results obtained are as follows. (1) The process of extremely low cycle fatigue can be classified into three stages which are composed of the generation, growth and coalescence of microvoids inside materials. (2) In an extremely low cycle fatigue regime, microvoids originate from debonding of graphite-matrix interface.

  • PDF

건식 공정에서 자발적 환원 반응에 의한 AEM 수전해용 Fe-Ni 나노 촉매 제조 및 특성 (Preparation and Characterization of Fe-Ni Nanocatalyst for AEM Electrolysis via Spontaneous Reduction Reaction in Dry Process)

  • 이재영;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제35권2호
    • /
    • pp.185-194
    • /
    • 2024
  • Fe-Ni nanocatalysts loaded on carbon black were prepared via spontaneous reduction reaction of iron (II) acetylacetonate and nickel (II) acetylacetonate in dry process. Their morphology and elemental analysis were characterized by scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive X-ray analyzer. The loading weight of the nanocatalysts was measured by thermogravimetric analyze and the surface area was measured by BET analysis. TEM observation showed that Fe and Ni nanoparticles was well dispersed on the carbon black and their average particle size was 4.82 nm. The loading weight of Fe-Ni nanocatalysts on the carbon black was 6.83-7.32 wt%, and the value increased with increasing iron (II) acetylacetonate content. As the Fe-Ni loading weight increased, the specific surface area decreased significantly by more than 50%, because Fe-Ni nanoparticles block the micropores of carbon black. I-V characteristics showed that water electrolysis performance increased with increasing Ni nanocatalyst content.

Expression, Purification, and Characterization of Iron-Sulfur Cluster Assembly Regulator IscR from Acidithiobacillus ferrooxidans

  • Zeng, Jia;Zhang, Ke;Liu, Jianshe;Qiu, Guanzhou
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권10호
    • /
    • pp.1672-1677
    • /
    • 2008
  • IscR (iron-sulfur cluster regulator) has been reported to be a repressor of the iscRSUA operon, and in vitro transcription reactions have revealed that IscR has a repressive effect on the iscR promoter in the case of [$Fe_{2}S_{2}$] cluster loading. In the present study, the iscR gene from A. ferrooxidans ATCC 23270 was cloned and successfully expressed in Escherichia coli, and then purified by one-step affinity chromatography to homogeneity. The molecular mass of the IscR was 18 kDa by SDS-PAGE. The optical and EPR spectra results for the recombinant IscR confirmed that an iron-sulfur cluster was correctly inserted into the active site of the protein. However, no [$Fe_{2}S_{2}$] cluster was assembled in apoIscR with ferrous iron and sulfide in vitro. Therefore, the [$Fe_{2}S_{2}$] cluster assembly in IscR in vivo would appear to require scaffold proteins and follow the Isc "AUS" pathway.

철 석출장치가 결합된 무산소.호기공정에 의한 인 제거 특성 (Phosphorus Removal (Characteristics by Anoxic Oxic Process) by Anoxic and Oxic Processed Combined with Iron Electrolysis)

  • 김민호;김영규;김수복
    • 한국환경보건학회지
    • /
    • 제36권6호
    • /
    • pp.502-509
    • /
    • 2010
  • In this study, the (phosphorous removal) the characteristics of phosphorous removal due to (the iron compound precipitated) iron compound precipitation by iron electrolysis in (the anoxic. oxic process) anoxic and oxic processes (equipped with the) in an iron precipitation device were analyzed. During the device operation period, the average concentration of BOD, T-N, and T-P were 219.9 mg/l, 54.6 mg/l and 6.71 mg/l, respectively. The BOD/$COD_{Cr}$ ratio was 0.74, and the BOD/T-N and BOD/T-P ratios were 4.0 and 32.8, respectively. The removal rate of (the organic matters) organic matter (BOD and $COD_{Cr}$) was very high at 91.6% or higher, and that of nitrogen was 80.5%. The phosphorous concentration (of the final) in the treated water was 0.43 mg/l (0.05-0.74 mg/l) on average, and the removal efficiency was high at 90.8%. The soluble T-P concentrations in (an) the anoxic reactor, oxic reactor (II) and final treated water were 1.99 mg/l, 0.79 mg/l and 0.43 mg/l, respectively, which indicated that the phosphorous concentration in the treated water was very low. Regardless of the changes in the concentrations of (organic matters) organic matter, nitrogen and phosphorous in the influent, the quality of the treated water was relatively stable and high. The removal rate of T-P somewhat increased with the increase in the F/M ratio in the influent, and it also linearly increased in proportion to the T-P loading rate in the influent. In the treatment process used in this study, phosphorous was removed (using) by the precipitated iron oxide. Therefore, the consumption of organic (matters) matter for biological phosphorus removal was minimized and (most of the organic matters were) was mostly used as the organic carbon source for the denitrification in the anoxic reactor. This (can be an economic) treatment process (without the need for the supply of additional organic matters) is economic and does not require the supply of additional organic matter.