• Title/Summary/Keyword: Iron ions

Search Result 314, Processing Time 0.039 seconds

Precipitation Characteristics of Heavy Metal Ions in Coal Mine Drainage (석탄광산배수에 함유된 중금속 이온의 침전 특성)

  • Jo, Young-Do;Ahn, Ji-Whan;Kim, Hyung-Seok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.2 s.52
    • /
    • pp.125-134
    • /
    • 2007
  • This study has been carried out in order to examine the precipitation characteristics of Fe, Mn and Al ions in coal mine drainage before removing heavy metals by using the froth flotation method. The removal rate of Fe(III), Mn(II) and Al(III) within 1 h accounted for over 99% in pH 5.0, 10.0, and $6.0{\sim}9.0$ respectively, and residual concentrations of which were under $1mgL^{-1}$. When sodium oleate as a collector was added to the solution of Fe, Mn, and Al ions, insoluble salts was not formed by the reaction of heavy metal and sodium oleate. So, we must remove the metals from coal mine drainage by using not the ion flotation method, but the precipitation flotation method

Preparation and Characterization of Casein Nanoparticles with Various Metal Ions as Drug Delivery Systems (다양한 금속 이온을 이용한 카세인 단백질 나노입자 형성 및 약물 전달체 특성 연구)

  • Minju Kim;Seulgi Lee;Joon Sig Choi
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.121-125
    • /
    • 2023
  • Casein is a milk protein and one of the most important nutrients in milk. The composition is over 80% in cow's milk and about 20~45% in human's milk. Casein is highly biocompatible and biodegradable, so it has been studied for various biomedical materials applications as well as drug delivery systems. It is widely known that casein can be prepared as nanoparticles in the presence of the Ca2+ metal ion. Because casein is amphiphilic, hydrophobic drugs could be loaded inside to form a protein-based drug delivery system. In this study, we studied the optimum conditions for casein nanoparticle formation using natural metal ions present in the body, such as calcium, magnesium, zinc, and iron. It was confirmed that nanoparticles have a uniform size of around 150 nm and negative zeta potential values. In addition, it was demonstrated that casein nanoparticles have a cell viability of more than 80% and efficient intracellular uptake properties using confocal microscopy. From the results, it was also shown that the casein nanoparticles prepared using various metal ions have the potential to be biocompatible drug delivery carriers.

Equilibrium Concentration of Radionuclides in Cement/Groundwater/Carbon Steel System

  • Keum, D.K.;Cho, W.J.;Hahn, P.S.
    • Nuclear Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.127-137
    • /
    • 1997
  • Equilibrium concentrations of major elements in an underground repository with a capacity of 100,000 drums have been simulated using the geochemical computer code (EQMOD). The simulation has been carried out at the conditions of pH 12 to 13.5, and Eh 520 and -520 mV. Solubilities of magnesium and calcium decrease with the increase of pH. The solubility of iron increases with pH at Eh -520 mV of reducing environment while it almost entirely exists as the precipitate of Fe(OH)$_3$(s) at Eh 520 mV of oxidizing environment. All of cobalt and nickel are predicted to be dissolved in the liquid phase regardless of pH since the solubility limit is greater than the total concentration. In the case of cesium and strontium, all forms of both ions are present in the liquid phase because they have negligible sorption capacity on cement and large solubility under disposal atmosphere. And thus the total concentration determines the equilibrium concentration. Adsorbed amount of iodide and carbonate are dependent on adsorption capacity and adsorption equilibrium constant. Especially, the calcite turns out to be a solubility-limiting phase on the carbonate system. In order to validate the model, the equilibrium concentrations measured for a number of systems which consist of iron, cement, synthetic groundwater and radionuclides are compared with those predicted by the model. The concentrations between the model and the experiment of nonadsorptive elements cesium, strontium, cobalt nickel and iron, are well agreed. It indicates that the assumptions and the thermodynamic data in this work are valid. Using the adsorption equilibrium constant as a free parameter, the experimental data of iodide and carbonate have been fitted to the model. The model is in a good agreement with the experimental data of the iodide system.

  • PDF

Performance of membrane filtration in the removal of iron and manganese from Malaysia's groundwater

  • Kasim, Norherdawati;Mohammad, Abdul Wahab;Abdullah, Siti Rozaimah Sheikh
    • Membrane and Water Treatment
    • /
    • v.7 no.4
    • /
    • pp.277-296
    • /
    • 2016
  • The aim of this research was to investigate the ability of nanofiltration (NF) and ultrafiltration (UF) membranes as a filtration unit for groundwater treatment for drinking water resources. Commercial membranes denoted as TS40, TFC-SR3 and GHSP were used to study the performance based on rejections and fluxes. The investigation has been conducted using natural groundwater obtained from a deep tube well with initial concentration of iron (Fe) and manganese (Mn) at 7.15 mg/L and 0.87 mg/L, respectively. Experimental results showed that NF membranes exhibited higher fluxes than UF membrane with pure water permeability at 4.68, 3.99 and $3.15L.m^{-2}.h^{-1}.bar^{-1}$, respectively. For metal rejection, these membranes have performed higher removal on Fe with TS40, TFC-SR3 and GHSP membranes having more than 82%, 92% and 86% respectively. Whereas, removal on Mn only achieved up to 60%, 80% and 30%, for TS40, TFC-SR3 and GHSP membranes respectively. In order to achieve drinking water standard, the membranes were efficient in removing Fe ion at 1 and 2 bar in contrast with Mn ion at 4 and 5 bar. Higher rejection of Fe and Mn were achieved when pH of feed solution was increased to more than 7 as TFC-SR3 membrane was negatively charged in basic solution. This effect could be attributed to the electrostatic effect interaction between membrane material and rejected ions. In conclusion, this study proved that NF membrane especially the TFC-SR3 membrane successfully treated local groundwater sources for public drinking water supply in line with the WHO standard.

A Preliminary Study on the Roles of Fe Content and Neoformed Ca-rich Minerals in the Coloration of Ceramic Glazes

  • Lee, Min Hye;Han, Min Su;Kim, Ji Hye
    • Journal of Conservation Science
    • /
    • v.36 no.4
    • /
    • pp.275-283
    • /
    • 2020
  • Iron oxides are the essential coloring oxides in traditional ceramic glazes. However, when Fe is involved in the coloration in the form of ions or colloids in glazes with low Fe content, it is difficult to identify the iron oxide phases. Generally, in many these glazes, Ca-rich minerals are observed by X-ray diffraction (XRD) or microscopic images, owing to their devitrification by the high Ca content. This study attempts to elucidate the correlation between the crystalline structure and coloration in the glazes while mainly focusing on neoformed Ca-rich minerals and Fe content. An experimental firing was carried out to produce tree ash glazes, with pine tree ash and Buyeo feldspar. In the case of oxidation glazes, the scanning electron microscopy (SEM) images and XRD patterns did not exhibit any Ca-rich crystals, and all the visible light reflectance spectra lines exhibited a similar shape. In contrast, the reduction glazes divided into blue glazes and other colored glazes according to the shapes of their reflectance spectra. It was confirmed that the influence of Ca-rich minerals on the glaze color was more pronounced than the blue color of the reduction glazes when the Ca and feldspar contents were sufficiently high and low, respectively, to form wollastonite. As the Ca content increased and the elemental composition of the reduction glazes changed, the neoformation of the Ca-rich minerals, such as wollastonite, anorthite, diopside, and akermanite was sequentially observed.

Corrosive Characteristics of Metal Materials by a Sulfate-reducing Bacterium (황산염환원미생물에 의한 금속재료의 부식 특성)

  • Lee, Seung Yeop;Jeong, Jongtae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.219-228
    • /
    • 2013
  • To understand characteristics of biogeochemical corrosion for the metal canisters that usually contain the radioactive wastes for a long-term period below the ground, some metal materials consisting of cast iron and copper were reacted for 3 months with D. desulfuricans, a sulfate-reducing bacterium, under a reducing condition. During the experiment, concentrations of dissolved metal ions were periodically measured, and then metal specimen and surface secondary products were examined using the electron microscopy to know the chemical and mineralogical changes of the original metal samples. The metal corrosion was not noticeable at the absence of D. desulfuricans, but it was relatively greater at the presence of the bacterium. In our experiment, darkish metal sulfides such as mackinawite and copper sulfide were the final products of biogeochemical metal corrosion, and they were easily scaled off the original specimen and suspended as colloids. For the copper specimen, in particular, there appeared an accelerated corrosion of copper in the presence of dissolved iron and bacteria in solution, probably due to a weakening of copper-copper binding caused by a growth of other phase, iron sulfide, on the copper surface.

Spatial Distributions of Alloying Elements Obtained from Atom Probe Tomography of the Amorphous Ribbon Fe75C11Si2B8Cr4

  • Shin, Jinkyung;Yi, Seonghoon;Pradeep, Konda Gokuldoss;Choi, Pyuck-Pa;Raabe, Dierk
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.190-193
    • /
    • 2013
  • Spatial distributions of alloying elements of an Fe-based amorphous ribbon with a nominal composition of $Fe_{75}C_{11}Si_2B_8Cr_4$ were analyzed through the atom probe tomography method. The amorphous ribbon was prepared through the melt spinning method. The macroscopic amorphous natures were confirmed using an X-ray diffractometer (XRD) and a differential scanning calorimeter (DSC). Atom Probe (Cameca LEAP 3000X HR) analyses were carried out in pulsed voltage mode at a specimen base temperature of about 60 K, a pulse to base voltage ratio of 15 %, and a pulse frequency of 200 kHz. The target detection rate was set to 5 ions per 1000 pulses. Based on a statistical analyses of the data obtained from the volume of $59{\times}59{\times}33nm^3$, homogeneous distributions of alloying elements in nano-scales were concluded. Even with high carbon and strong carbide forming element contents, nano-scale segregation zones of alloying elements were not detected within the Fe-based amorphous ribbon. However, the existence of small sub-nanometer scale clusters due to short range ordering cannot be completely excluded.

Negative Resistance Characteristics of $Fe_{1+x}V_{2-x}O_4$ Spinels ($Fe_{1+x}V_{2-x}O_4$ Spinel의 부성저항특성)

  • Lee, Gil-Sik;Son, Byeong-Gi;Lee, Jong-Deok
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.14 no.3
    • /
    • pp.25-31
    • /
    • 1977
  • Fe V spinels were prepared by sintering the well-ground stoichiometric mixtures of Fe O and V O at 1,10$0^{\circ}C$ under H -CO atmosphere. The activation energy for electrical conduction decreases with increasing amount of iron. The tendency of activation energy depending on the amount of iron contained clarifies that the electrical condction of the spinel is mainly due to electron hopping between Fe and Fe ions at B sites. In the experiment for negative resistance characteristics, the threshold voltage (Vth) for the samples is related to ambient temperature, thickness and raising rate of applied voltage. Vth decreases as temperature increases while Vth increases linearly with thickness and Vth increases linearly with the raising rate of applied voltage in semi-logarithmic scale. These results lead to a conclusion that current paths mainly formed by thermal breakdown are ascribed to the negative resistance phenomena. Applying this property, these vanadium iron spinels may be used for switching elements.

  • PDF

Removal of Copper from the Solution Containing Copper, Nickel, Cobalt and Iron (구리, 니켈, 코발트, 철 혼합용액(混合溶液)으로부터 구리의 제거(除去))

  • Park, Kyung Ho;Nam, Chul Woo;Kim, Hyun Ho;Barik, Smruti Prakash
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.48-54
    • /
    • 2013
  • The methods to separate and remove copper in the mixed solution ((399 ppm Cu, 208 ppm Fe, 15.3 g/L Ni, 2.1 g/L Co) with nickel, cobalt and iron were investigated. With hydroxide precipitation method, copper and iron ions were completely precipitated and removed from the solution at pH 7 while some nickel and cobalt also were precipitated. 99.75% copper could be precipitated and removed as copper sulfide from the solution with adding $Na_2S$ (1.25 w/v concentration) of 2 times equivalent of Cu at pH 1. Copper was selectively absorbed on TP 207 ion exchange resin at equilibrium pH 2.0 and could be eluted from copper-loaded resin using 5% $H_2SO_4$.

A Study on Iron Compounds of Volcanic Basalt at Hantan Riverside in Cheorwon (철원 한탄강유역 현무암의 철 화합물에 관한 연구)

  • Yoon, In Seop;Kim, Sun Bae
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.5
    • /
    • pp.169-173
    • /
    • 2015
  • Fe compounds of volcanic basalt samples distributed at the Hantan riverside in Cheorwon were investigated by means of X-ray diffractometry (XRD), X-ray fluorescence spectroscopy (XRF) and $M{\ddot{o}}ssbauer$ spectroscopy. We found that samples were typical basic rock which consisted of augite, anorthite, albite and sanidine etc. They had the total amount of iron compounds including hematite (${\alpha}-Fe_2O_3$) varies from 6.20 w% to 12.8 w% depending on the different regions by XRF. The $M{\ddot{o}}ssbauer$ spectra of the samples were consisted of three doublets. The balance state of Fe ions of all samples were chiefly $Fe^{2+}$, and $Fe^{2+}/Fe^{3+}$ ratios were 2.27~3.42.