• Title/Summary/Keyword: Iron and copper losses

Search Result 43, Processing Time 0.031 seconds

Construction and Characteristics Analysis on the Field System of the High Speed Motor by using Permanent Magnet Halbach Array (영구자석 Halbach 배열을 이용한 초고속 모터용 계자시스템의 구성과 특성 해석)

  • Jang, Seok-Myeong;Seo, Jin-Ho;Jeong, Sang-Seop;Choe, Sang-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.4
    • /
    • pp.152-160
    • /
    • 1999
  • A high speed motor has been generating a lot of attention due to its performance-more light, thin, short, compact than ordinary motors. But they have low efficiency with high frequency power source because of the iron losses which may produce too much heat as well as the copper losses occurred in the rotor windings. The Halbach array can generate the strong magnetic field systems without additional magnetic materials, therefore the iron losses can be removed. In this paper, the Halbach array is applied to the field system for the high speed motor, and three dimensional FEM is used to analyze the field of the Halbach array considering with the leakage flux. The measured values of flux density are also compared with the FEM analysis. And the magnetic characteristics of the Halbach array field system are compared with those of the conventional field systems such as slot-iron type, PM-iron type. Consequently, it is confirmed that the Halbach array field system is more suitable to the high speed motor because it has high flux density, sinusoidal flux distribution than others.

  • PDF

Analysis on the flux density in Air-Cored and Iron-Cored type Syschrous Macl (공심형 및 철심형 동기기의 특성해석)

  • Jang, S.M.;Cho, S.K.;Yoon, I.K.;Lee, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.604-606
    • /
    • 2002
  • Air-cored machines have a higher efficiency with high frequency. speed than iron-cored machine because of the iron losses which may produce too much heat as well as the copper losses occurred in the rotor winding. But air-cored machine is lower flux than iron machine. The nature of the machine from 'iron-cored' to 'air-cored' is a progressive feature in the machines. A general analysis of the fields that is applicable to all configurations is presented. Slotless machines have been applied for no ripple induced voltage. In this paper, slotless mahcines equipped with internal 4-pole amature winding. This paper pay attention to analyze flux density of air-cored and iron-cored synchrous machine analytically and compare flux density of aired-cored machine to iron-cored machine.

  • PDF

Efficiency Optimization Control for High Performance Operation of Synchronous Reluctance Motor (동기 리럭턴스 전동기의 고성능 운전을 위한 효율 최적화 제어)

  • 정동화;이정철;이홍균
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.51-56
    • /
    • 2001
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor (SynRM) which minimizes the copper and iron losses. fen exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization controller is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. It is shown that the current components which directly govern the torque production have been very well regulated by the efficiency optimization control scheme. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. Simulation results are presented to show the validity of the proposed algorithm.

  • PDF

Fuzzy Logic Speed Controller of 3-Phase Induction Motors for Efficiency Improvement

  • Abdelkarim, Emad;Ahmed, Mahrous;Orabi, Mohamed;Mutschler, Peter
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.305-316
    • /
    • 2012
  • The paper presents an accurate loss model based controller of an induction motor to calculate the optimal air gap flux. The model includes copper losses, iron losses, harmonic losses, friction and windage losses, and stray losses. These losses are represented as a function of the air gap flux. By using the calculated optimal air gap flux compared with rated flux for speed sensorless indirect vector controlled induction motor, an improvement in motor efficiency is achieved. The motor speed performance is improved using a fuzzy logic speed controller instead of a PI controller. The fuzzy logic speed controller was simulated using the fuzzy control interface block of MATLAB/SIMULINK program. The control algorithm is experimentally tested within a PC under RTAI-Linux. The simulation and experimental results show the improvement in motor efficiency and speed performance.

A Study on Characteristics of induction Motor using the magnet wedge (자성웨지를 이용한 유도전동기의 특성에 관한 연구)

  • Hong, Sung-Il;Bae, Byeong-Chun;Yoo, Woo-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.607-611
    • /
    • 1992
  • This paper presents the methods in improving the efficiency using of magnet wedge. After the energy crises of 1970's, more emphasis was placed on higher efficiencies. Efficiency of an induction motor can be improved by reducing the total losses, copper, losses, iron or core losses etc. However high efficiency designs result, in larger size and cost than standard motors. In the methods of the reducing the losses, ripple losses of slot flux can be reduced by using the magnet wedge, but the starting torque decrease by means of increasing of leakage reactance.

  • PDF

Analysis of the Cooling System for Traction Motors of the High-Speed EMU (동력분산형 고속 전철의 견인전동기 냉각 시스템 해석 및 설계기술 연구)

  • Seo, Jang-Ho;Lee, Sang-Yub;Jung, Hyun-Kyo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1188-1194
    • /
    • 2008
  • To cope with the demagnetization risk of permanent magnets used in Interior Permanent Magnet Synchronous Motors(IPMSM), an accurate iron analysis and thermal analysis are very important. In this research, to calculate thermal increment of IPMSM for high-speed traction motor, we will extract losses of IPMSM considering the condition of field weakening control. Then we will input the calculated losses such as iron loss and copper loss as the thermal sources. Based on magnetic filed and thermal analysis, we will support the design of IPMSM for high-speed train.

  • PDF

Finite Element Study of Ferroresonance in single-phase Transformers Considering Magnetic Hysteresis

  • Beyranvand, Morteza Mikhak;Rezaeealam, Behrooz
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.196-202
    • /
    • 2017
  • The occurrence of ferroresonance in electrical systems including nonlinear inductors such as transformers will bring a lot of malicious damages. The intense ferromagnetic saturation of the iron core is the most influential factor in ferroresonance that makes nonsinusoidal current and voltage. So the nonlinear behavior modeling of the magnetic core is the most important challenge in the study of ferroresonance. In this paper, the ferroresonance phenomenon is investigated in a single phase transformer using the finite element method and considering the hysteresis loop. Jiles-Atherton (JA) inverse vector model is used for modeling the hysteresis loop, which provides the accurate nonlinear model of the transformer core. The steady-state analysis of ferroresonance is done while considering different capacitors in series with the no-load transformer. The accurate results from copper losses and iron losses are extracted as the most important specifications of transformers. The validity of the simulation results is confirmed by the corresponding experimental measurements.

The Study of the Stray Load Loss and Mechanical Loss of Three Phase Induction Motor considering Experimental Results

  • Kim, Dong-Jun;Choi, Jae-Hak;Chun, Yon-Do;Koo, Dae-Hyun;Han, Pil-Wan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.121-126
    • /
    • 2014
  • The accurate determination of induction motor efficiency depends on the estimation of the five losses of stator and rotor copper loss, iron loss, mechanical loss and stray load loss. As the mechanical and stray load losses are not calculated by electro-magnetic analysis, the values of these two losses are very important in induction motor design. In this paper, the values of mechanical loss and stray load loss are proposed through investigating testing data from commercial products of three phase induction motors under 37kW. If the values of this paper are applied to motor design, the accuracy of design and analysis can be improved. The losses of motors are obtained by using load and no-load test results following IEC 60034-2-1 standard.

A Novel Efficiency Optimization Control of SynRM Considering Iron Loss with Neural Network (신경회로망에 의한 철손을 고려한 SynRM의 새로운 효율 최적화 제어)

  • Kang, Sung-Joon;Ko, Jae-Sub;Choi, Jung-Sik;Baek, Jung-Woo;Jang, Mi-Geum;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.776_777
    • /
    • 2009
  • Optimal efficiency control of synchronous reluctance motor(SynRM) is very important in the sense of energy saving and conservation of natural environment because the efficiency of the SynRM is generally lower than that of other types of AC motors. This paper is proposed a novel efficiency optimization control of SynRM considering iron loss using neural network(NN). The optimal current ratio between torque current and exciting current is analytically derived to drive SynRM at maximum efficiency. This paper is proposed an efficiency optimization control for the SynRM which minimizes the copper and iron losses. The design of the speed controller based on adaptive learning mechanism fuzzy-neural networks(ALM-FNN) controller that is implemented using fuzzy control and neural networks. The objective of the efficiency optimization control is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. The control performance of the proposed controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

  • PDF

The Generating Characteristic Analysis of Permanent Magnet Machines with Multi-Pole Rotor Considering Losses (손실을 고려한 영구자석형 다극 기기의 발전특성해석)

  • Jang, Seok-Myeong;Choi, Jang-Young;Ko, Kyoung-Jin;Lee, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.47-49
    • /
    • 2007
  • This paper deals with the generating characteristic analysis of permanent magnet (PM) machines with multi-pole rotor and 3-phase stator windings considering losses such as copper loss, iron loss and mechanical loss. First, using d-q transformation, dynamic equations of PM machines are established. And then, characteristic equations for losses, power and efficiency are also derived. On the basis of d-q dynamic equations and characteristic equations, dynamic simulation algorithm is achieved by the MATLAB/SIMULINK. The simulation results are validated extensively by finite element (FE) analyses.

  • PDF