• Title/Summary/Keyword: Iron Production

Search Result 609, Processing Time 0.024 seconds

Study on the Iron Production Process through the Analysis of By-Products Found at Jiǔdiàn Iron Production Site, China

  • Bae, Chae Rin;Cho, Nam Chul;Jo, Young Hoon;Chen, Jianli
    • Journal of Conservation Science
    • /
    • v.34 no.4
    • /
    • pp.273-281
    • /
    • 2018
  • $Ji{\check{u}}di{\grave{a}}n$ iron production site in China is a relic smelting site, which in the past produced pig iron. In this study, scientific analysis of the smelting furnace and collected slag was conducted to reveal some aspects of the ancient Chinese smelting technique. A 3D model of the smelting furnace showed a narrow lower part and an upper section which increased in diameter upwards. Although the smelting furnace relic does not include the upper part and its complete shape cannot be predicted, the remaining part suggests that the furnace had a larger diameter in the central part compared to the upper and lower parts. Most of the collected slag was completely vitrified. Long prismatic fayalite was observed in the matrix of some samples. The iron particles contained phosphorus, which could not be discharged during smelting work. In addition, as the $CaO/SiO_2$ ratio was 0.42 or lower in the results of the content analysis, no CaO slag former had been added. However, the ratio of $CaO/SiO_2$ to $Al_2O_3/SiO_2$ did not have a constant trend. This needs to be investigated in a further study.

Iron Technologies of the Three Kingdoms Period in Korea (삼국시대(三國時代) 철기유물(鐵器遺物)의 제작기술(製作技術) 연구(硏究))

  • Chung, Kwang-Yong
    • Korean Journal of Heritage: History & Science
    • /
    • v.35
    • /
    • pp.138-158
    • /
    • 2002
  • To compare and analyze technical system related to manufacturing of ironware during the period of the Three Kingdoms, an analysis was conducted on the minute system of metalwork, as study objects, of the remains of the Mt. Wolpyeong fortress wall in Daejeon in the period of capital during the era of the Three Kingdoms in the 5th century, the Sanwol-ri remains in the 6th century in Gunsan and the remains of ironware excavated from the great ancient tomb of Hwangnam of the Silla dynasty in the 5th century. The result of analysis shows that in the most of the casting products, the minute system of white cast iron were contained. While the iron part of decarbonization was in the system by casting as white cast iron in the central part, on the surface layer it was turned out that comparatively uniform 100% pearlite system of about 1~2mm degree was existing. The part of pearlite on the surface layer was caused by decarbonization, which appears in all the parts of blade front end and handle. Therefore, it was found that the iron part of decarbonization was manufactured by casting, and then was processed at the high temperature by decarbonization. For the products of forging, after processing the products on the basis of pure iron for materials, they manufactured the ironware that raises the strength by carbonizing that keeps carbon infiltrated on the necessary part, by the method of black smith welding that add pure iron to steel, or by varying the method of heat processing onto the part required of strength. Though limited, we could understand that the technical systems for manufacturing skill of ironware in the areas of Baekje and Silla were different each other. In the technical system for Hwangnam great ancient tomb in the Silla area, it is found that they had raised the strength on the necessary part by applying the steelmaking method of carbonizing in the last stage of production of products, in the meantime in Baekje area, it appears that they had produced steel in advance in the first stage of production of the products, and used the produced steel only to the necessary part.

Studies in Iron Manufacture Technology through Analysis of Iron Artifact in Han River Basin during the Proto-Three Kingdoms

  • Kim, Soo-Ki
    • Conservation and Restoration of Cultural Heritage
    • /
    • v.1 no.1
    • /
    • pp.9-22
    • /
    • 2012
  • The most widely excavated iron artifacts used as weapons or farm tools from central southern regions of Korea were subjects of non-metallic inclusion analysis through metallographic examination, microhardness measurement, and scanning electron microscopy with energy dispersive X-ray spectroscopy. Through metallographic interpretation and study of the analyzed results, the steel manufacturing and iron smelting using heat processing in the iron artifacts excavated from the central southern region of the ancient Korean peninsula was studied, and the analysis of the non-metallic inclusions mixed within the metallic structures was interpreted as the ternary phase diagram of the oxide to infer the type of iron ores for the iron products and the temperature of the furnace used to smelt them. Most of the ancient forged iron artifacts showed $Al_2O_3/SiO_2$ with high $SiO_2$ contents and relatively low $Al_2O_3$ contents for iron ore, indicating t hat for $Al_2O_3$ below 5%, it is presumed that magnetic iron ores were reduced to bloom iron (sponge iron) with direct-reduction process for production. The temperature for extraction of wustite for $Al_2O_3$ below 1% was found to be $1,020{\sim}1,050^{\circ}C$. Considering the oxide ternary constitutional diagram of glassy inclusions, the steel-manufacturing temperature was presumed to have been near $1,150{\sim}1,280^{\circ}C$ in most cases, and minimum melting temperature of casting iron part excavated in Daeseong-ri. Gyeonggi was near $1,400^{\circ}C$, and it is thought that hypoeutectic cast iron of about 2.3% carbon was casted and fragility of cast iron was improved by decarburizing in solid state.

The factors of dimensional change of Fe-Cu-C sintered objects

  • Fujinaga, Masashi;Suzuki, Yoshitomo
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.299-302
    • /
    • 1998
  • Dimensional accuracy is one of the most important issues in the production of sintered parts. The iron-copper-carbon system is commonly used alloys in sintered structural parts production. The dimensional control of these alloys, however, is not easy because of their complex sintering behavior. This study is an effort to clarify the influence of common factors on dimensional change of Fe-Cu-C sintered structural parts. We determined the effect of such various parameters as chemical composition, particle diameter, compact density, sintering temperature and sintering time on dimensional changes. Consequently, we obtained a useful formula to predict the final dimension in function of these parameters. The effect of typical impurities in copper powder on the dimensional change of sintered parts has also been described.

  • PDF

Formation of TiC Composite Layer on Ductile Iron by Laser Surface Modification (레이저 처리에 의한 구상흑연주철의 TiC 복합화에 관한 연구)

  • Kim, Woo-Yeol;Park, Heung-Il
    • Journal of Korea Foundry Society
    • /
    • v.18 no.6
    • /
    • pp.593-603
    • /
    • 1998
  • Commercial ductile iron was coated with titanium and aluminum powders by low pressure plasma spraying and then irradiated with a $CO_2$ laser to produce anti-corrosive TiC composite layer. TiC carbides were precipitated homogeneously in a laser alloyed layer by in-situ reaction between carbon existed in the base metal and titanium with thermal sprayed coating. The formation of gas pores and brittle limited mixing zone with ledeburite microstructure in TiC composite layer were surpressed by the complementary alloying of aluminum. The hardness of TiC composite layer obtained by addition of titanium and aluminum was between 600 and 660 Hv, which was three times as high as the hardness of ferritic ductile iron. From the results of isothermal oxidation at 1123k for 24 hours in air, high temperature oxidation resistance of the TiC composite layer with aluminum was improved and doubled when compared with the TiC composite layer without aluminum.

  • PDF

Manufacturing and Characteristics of Binderless Briquette for In -Mold Melt Treatment of Ductile iron (구상흑연주철의 인몰드 용탕처리용 무점결제 브리켓의 제조 및 특성)

  • Baglyuk, G.A.;Shin, Je-Sik;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.29 no.5
    • /
    • pp.192-197
    • /
    • 2009
  • The manufacturing and application characteristics of binderless briquette for in-mold melt treatment of ductile cast iron were investigated. The porosity of briquette was decreased with increased magnesium content. The dissolution rate was increased with the latter in the range of 5~10%. The fluxing effect was the best when 5%$CaF_2$ was added. The optimum composition of the binderless briquette was obtained.

SYNTHESIS OF NANO-SIZED IRON FOR REDUCTIVE DECHLORINATION. 1. Comparison of Aerobic vs. Anaeriobic Synthesis and Characterization of Nanoparticles

  • Song, Ho-Cheol;Carraway, Elizabeth R.;Kim, Young-Hun
    • Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.165-173
    • /
    • 2005
  • Nano-sized iron particles were synthesized by reduction of $Fe^{3+}$ in aqueous solution under two reaction conditions, aerobic and anaerobic, and the reactivity of iron was tested by reaction with trichloroethene (TCE) using a batch system. Results showed that iron produced under anoxic condition for both synthesis and drying steps gave rise to iron with higher reduction reactivity, indicating the presence of oxygen is not favorable for production of nano-sized iron deemed to accomplish reactivity enhancement from particle sized reduction. Nano-sized iron sample obtained from the anoxic synthesis condition was further characterized using various instrumental measurements to identity particle morphology, composition, surface area, and particle size distribution. The scanning electron microscopic (SEM) image showed that synthesized particles were uniform, spherical particles (< 100 nm), and aggregated into various chain structures. The effects of other synthesis conditions such as solution pH, initial $Fe^{3+}$ concentration, and reductant injection rate on the reactivity of nano-sized iron, along with standardization of the synthesis protocol, are presented in the companion paper.

Enhanced Expression of High-affinity Iron Transporters via H-ferritin Production in Yeast

  • Kim, Kyung-Suk;Chang, Yu-Jung;Chung, Yun-Jo;Park, Chung-Ung;Seo, Hyang-Yim
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.82-87
    • /
    • 2007
  • Our heterologous expression system of the human ferritin H-chain gene (hfH) allowed us to characterize the cellular effects of ferritin in yeasts. The recombinant Saccharomyces cerevisiae (YGH2) evidenced impaired growth as compared to the control, which was correlated with ferritin expression and with the formation of core minerals. Growth was recovered via the administration of iron supplements. The modification of cellular iron metabolism, which involved the increased expression of high-affinity iron transport genes (FET3 and FTR1), was detected via Northern blot analysis. The findings may provide some evidence of cytosolic iron deficiency, as the genes were expressed transcriptionally under iron-deficient conditions. According to our results examining reactive oxygen species (ROS) generation via the fluorescence method, the ROS levels in YGH2 were decreased compared to the control. It suggests that the expression of active H-ferritins reduced the content of free iron in yeast. Therefore, present results may provide new insights into the regulatory network and pathways inherent to iron depletion conditions.

An update technology trend in iron oxide (산화철산업(酸化鐵産業)의 개발동향(開發動向))

  • Sohn, Jin-Gun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.11a
    • /
    • pp.47-58
    • /
    • 2005
  • From the world wide globalization of iron oxide industy, the global trade in iron oxide is changed rapidly and the production of iron oxide is increasing in China, currently. Iron oxide have a broad range of applications from construction materials to medical area. Therefore, it is expected that nanoparticulate iron oxides have many applications, too. There is a series of interesting applications are introduced, but in entirely different fields as they are known from conventional iron oxide.

  • PDF

Photoelectrochemical performance of anodized nanoporous iron oxide based on annealing conditions (양극산화로 제조된 다공성 나노구조 철 산화막의 열처리 조건에 따른 광전기화학적 성질)

  • Dongheon Jeong;JeongEun Yoo;Kiyoung Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.265-272
    • /
    • 2023
  • Photoelectrochemical (PEC) water splitting is one of the promising methods for hydrogen production by solar energy. Iron oxide has been effectively investigated as a photoelectrode material for PEC water splitting due to its intrinsic property such as short minority carrier diffusion length. However, iron oxide has a low PEC efficiency owing to a high recombination rate between photoexcited electrons and holes. In this study, we synthesized nanoporous structured iron oxide by anodization to overcome the drawbacks and to increase surface area. The anodized iron oxide was annealed in Ar atmosphere with different purging times. In conclusion, the highest current density of 0.032 mA/cm2 at 1.23 V vs. RHE was obtained with 60 s of pursing for iron oxide(Fe-60), which was 3 times higher in photocurrent density compared to iron oxide annealed with 600 s of pursing(Fe-600). The resistances and donor densities were also evaluated for all the anodized iron oxide by electrochemical impedance spectra and Mott-Schottky plot analysis.