• Title/Summary/Keyword: Iron Content

Search Result 957, Processing Time 0.027 seconds

Effects of Thickness, Base Element and Additive to Inoculant on the Number of Eutectic Cells and Chill Depth of Thin-Section Gray Cast Iron (박육주철의 공정 셀 수와 칠 깊이에 미치는 두께, 기본 원소 및 접종제 첨가 원소의 영향)

  • Kim, Tae-Hyeong;Lee, Woo-Jong;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.32 no.6
    • /
    • pp.261-268
    • /
    • 2012
  • The effects of thickness, base element and additive to inoculant on the number of eutectic cells and chill depth of thin-section gray cast iron were investigated. Meanwhile the number of eutectic cells increased by inoculation, chill depth decreased. The former decreased and the latter increased by holding the melt at the temperature range between 1,450 and $1,500^{\circ}C$. The former was more for the thinner casting with the thickness of 5 mm than the other. The result of thermal analysis coincided well with the change of macrostructure. The former increased and the latter decreased with the increased contents of carbon, silicon and the silicon content by inoculation. The former decreased and the latter increased with increased manganese content. The number of eutectic cells decreased as the amounts of rare earth and the bismuth added to this inoculant increased. With the addition of sulfur of 0.10 wt% of the weight of this inoculant, the maximum number of eutectic cells was obtained.

Study on the Effect of Mo Addition and Casting Thickness on the Mechanical Properties of Thin Ductile Cast Iron (박육구상흑연주철에 있어서 Mo 첨가 및 주물두께의 영향에 관한 연구)

  • Song, Byeong-Woo;Choi, Yang-Jin;Kim, Yong-Hwan;Park, Yong-Jin
    • Journal of Korea Foundry Society
    • /
    • v.13 no.2
    • /
    • pp.175-186
    • /
    • 1993
  • In this study, the effect of Mo addition on the microstructure and mechanical properties of ductile cast iron have been investigated. The amounts of Mo and the thickness of specimen have been varied from 0 to 4.79wt% and 13mm, 10mm and 6mm, respectively. As the casting thickness decreases, the average size of spheroidal graphite is decreased and the hardness increases. By increasing the Mo content, the tensile strength of ferrite and pearlite matrix increases and shows maximum which is about $30{\sim}40%$ higher than ordinary ductile cast iron. After the maximum, adding more Mo results in gradual transformation of ferrite and pearlite to bainite and thus tensile strength decreases again. The elongation decreases continueously with Mo content. The addition of Mo about $0.5{\sim}1.0wt%$ improves the wear resistance and tensile strength of thin ductile cast iron.

  • PDF

Changes in Cytochrome c Oxidase and NO in Rat Lung Mitochondria Following Iron Overload

  • Kim, Min-Sun;Hong, Min-A;Song, Eun-Sook
    • Animal cells and systems
    • /
    • v.13 no.2
    • /
    • pp.105-112
    • /
    • 2009
  • In this study, the effects of iron on cytochrome c oxidase (CcO) in rat lung mitochondria were examined. Similar to liver mitochondria, iron accumulated considerably in lung mitochondria (more than 2-fold). Likewise, the reactive oxygen species and nitric oxide (NO) content of mitochondria were increased by more than 50% and 100%, respectively. NO might be produced by nitric oxide synthase (NOS), eNOS and iNOS type, with particular contribution by NOS in mitochondria. The respiratory control ratio of iron overloaded lung mitochondria dropped to nearly 50% due to increased state 4. Likewise, cytochrome c oxidase activity was lowered significantly to approximately 50% due to excess iron. Real-time PCR revealed that the expression of isoforms 1 and 2 of subunit IV of CeO was enhanced greatly under excess iron conditions. Taken together, these results show that oxidative phosphorylation within lung mitochondria may be influenced by iron overload through changes in cytochrome c oxidase and NO.

Extract changes of Caulis Lonicerae Japonicae according to with or without Iron (인동(忍冬)의 기철(忌鐵) 및 반철(伴鐵) 추출시(抽出時) 추출물(抽出物)의 변화(變化))

  • Jeong, Deok Ja;Jung, Dae Hwa;Jang, Mi Hee;Park, Chung A;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.28 no.3
    • /
    • pp.281-287
    • /
    • 2020
  • Objectives : In case of herbs decoction, the ceramic or earthware pots was recommended, but not the metals, particularly iron or aluminum, which could cause unknown chemical reactions. In Korean Medical classics, it has been known that some herbs including Caulis Lonicerae Japonicae (CL) were not recommended to boil with iron pot. This study investigates the physical changes of extracts of CL with or without iron. Methods : CL was decocted with reflux cooling extraction system to prevent evaporation and volatilization. Content of polyphenol was detected by Folin-Denis method and the levels of loganin and chlorogenic acid were evaluated by UPLC. Results : The color of extract with glass beads (GB) is yellowish brown, and the iron beads (IB) is blackish brown. Polyphenol and chlorogenic acid levels were reduced in IB extracts. Conclusions : The color of extract was change to blackish brown, and polyphenol and chlorogenic acid levels were reduced in CL extract with iron. Therefore, iron pots is not suitable for CL extraction.

Effect of Surfactant Micelles on Oxidation in W/O/W Multiple Emulsion (Surfactant micelle이 W/O/W multiple emulsion의 산화에 미치는 영향)

  • Cha, Woen-Seup;Cho, Young-Je
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1611-1616
    • /
    • 2010
  • The purpose of this research was to determine the effect of surfactant micelles on lipid oxidation in W/O/W multiple emulsions. The content of ferric irons and hydroperoxide in the continuous phase in W/O/W multiple emulsions was measured as a function of Brij micelle. The concentration of ferric iron and hydroperoxide in the continuous phase increased with increased storage time (1~6 days). Lipid oxidation rates, as determined by the formation of lipid hydroperoxides, TBARs and headspace hexanal, in the W/O/W multiple emulsions containing ferric iron decreased when 3% surfactant micelles were exceeded. These results indicate that excess surfactant micelles could alter the physical location and prooxidant activity of iron in W/O/W multiple emulsions.

Effect of high energy ball milling on the structure of iron - multiwall carbon nanotubes (MWCNT) composite

  • Kumar, Akshay;Pandel, U.;Banerjee, M.K.
    • Advances in materials Research
    • /
    • v.6 no.3
    • /
    • pp.245-255
    • /
    • 2017
  • High energy ball milling is employed to produce iron matrix- multiwall carbon nanotube (MWCNT) reinforced composite. The damage caused to MWCNT due to harsh ball milling condition and its influence on interfacial bonding is studied. Different amount of MWCNT is used to find the optimal percentage of MWCNT for avoidance of the formation of chemical reaction product at the matrix - reinforcement interface. Effect of process control agent is assessed by the use of different materials for the purpose. It is observed that ethanol as a process control agent (PCA) causes degradation of MWCNT reinforcements after milling for two hours whereas solid stearic acid used as process control agent, allows satisfactory conservation of MWCNT structure. It is further noted that at a high MWCNT content (~ 2wt.%), high energy ball milling leads to reaction of iron and carbon and forms iron carbide (cementite) at the iron-MWCNT interface. At low percentage of MWCNT, dissolution of carbon in iron takes place and the amount of reinforcement in iron matrix composite becomes negligibly small. However, under the present ball milling condition (ball to metal ratio~ 6:1 and 200 rpm vial speed) iron-1wt.% MWCNT composite of good interfacial bonding can retain the tubular structure of reinforcing MWCNT.

Studies on the Iron Component of Soy Sauce, Bean Paste and Red Pepper Paste -Part I. Iron Content of Soy Sauce- (장류(醬類)의 철분(鐵分)에 관(關)한 연구(硏究) - 제1보(第一報). 간장중의 철분함량(鐵分含量) -)

  • Yoo, Hai-Yul;Park, Yoon-Joong;Lee, Suk-Kun;Son, Cheon-Bae
    • Applied Biological Chemistry
    • /
    • v.22 no.3
    • /
    • pp.160-165
    • /
    • 1979
  • This study was carried out to investigate effects of iron content on the quality of soy sauce, bean paste and red pepper paste, and to elucidate the origin of iron and change of the contents during production processes. For the first step, the iron contents in commercial soy sauce and changes of the contents during brewing process were determined. The results obtained were as follows. 1, Iron contents of raw materials were 108 ppm in soy bean, 133ppm in defatted soy bean, 79 ppm in wheat, 5 ppm in sodium chloride, 58 ppm in seed koji, 300-2000 ppm in spore of Aspergillus oryzae, 240 ppm in wheat gluten, 20 ppm in sodium carbonate (above figures were of dry weight basis), 6 ppm in hydrochloric acid, 18 ppm in caramel and 0.3ppm in brewing water respectively. 2, Iron contents in koji were 200-240 ppm (as dry weight basis) and increased, more or less, in progress of koji-making period. 3. Iron contents in the mashes during fermentation were 40 rpm after 1 month, 43-47 ppm after 3 months and 49-62ppm after 6 months. 4. In chemical soy sauce, the iron content was 159 ppm after hydrolysis of wheat gluten with hydrochloric acid, and 184 ppm after neutralization. 5. Higher iron contents were detected both in fermented and chemical soy sauce when the concentration of total nitrogen increased, but the levels were higher in chemical soy sauce than in fermented one at the same concentration of total nitrogen. 6. In the case of fermented soy sauce, the iron content in the filtrate was decreased by press-filtration, but no significant change was found between before and after heat-sterilization. 7. Iron contents in commercial soy sauce were varied with the producers, however, the average value was 62.7 ppm as calculated as 1.0 percent of total nitrogen. And the average level of iron in home-made soy sauce produced by conventional method was 37.68 ppm.

  • PDF

Study on Carbon Pick-up in molten iron (I);Effect of Crystallization heat treatment of Carbon-bearing materials on Carbon Pick-up in molten iron (용철(熔鐵)에서의 가탄(加炭)에 관(關)한 연구(硏究)(1);가탄(加炭)에 미치는 탄소재(炭素材)의 결정화열처리(結晶化熱處理)의 영향)

  • Cho, Won-Il;Lee, Jong-Nam
    • Journal of Korea Foundry Society
    • /
    • v.3 no.3
    • /
    • pp.159-166
    • /
    • 1983
  • In order to develope domestic carburizers, the experiment was carried out by applying crystallization heat treatment to domestic anthracites and also to foreign products to compare with domestic anthracites.The present work was mainly concerned with the effect of their degree of crystallization of carbon-bearing materials on carbon pick-up in molten iron.Those effects were evaluated by the measurement of density, chemical composition, specific electric resistivity, and X-ray intensity of carbon-bearing materials. Experimental results thus obtained were summurized as follows. 1. The degree of crystallization of domestic anthracites and foreign products was increased with increasing heat treatment temperature. 2. The more degree of crystallization, the shorter the dissolving time of domestic anthracites in molten iron was obtained, while that of foreign products was remained constant. 3. As the degree of crystallization of domestic anthracites and foreign products was increased, the carbon content as well as carbon recovery in molten iron was increased.

  • PDF

Using Waste Foundry Sands as Reactive Media in Permeable Reactive Barriers

  • 이태윤;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.62-65
    • /
    • 2002
  • Permeable reactive barriers (PRBs) are in-situ barriers constructed in a subsurface to treat contaminated groundwater using various reactive media. The common reactive medium used in PRB is zero-valent iron, which has been widely used to treat chlorinated solvents (i.e., PCE, TCE). A disadvantage of iron media is high cost. In this study, waste foundry sands were tested to determine the feasibility of their use as a low cost reactive medium. Batch and column tests were conducted with TCE to determine transport parameters and reactivity of the foundry sands. The reactivities of foundry sands for common groundwater contaminants are comparable to or slightly higher than those for Peerless iron, a common medium used in PRBs. In addition, the TOC and clay in foundry sands can significantly retard the movement of target contaminant, which may result in lower effluent concentration of contaminant due to biodegradation. In general, PRBs 1-m thick can be constructed with many foundry sands to treat TCE provided the zero-valent iron content in the foundry sand is higher than 1%.

  • PDF

A Study on Fracture Behavior and Impact Stability of Sintered Rare-earth Permanent Magnets

  • Li, Wei;Li, Anhua;Wang, Huijie;Dong, Shengzhi;Guo, Yongquan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.790-791
    • /
    • 2006
  • The fracture behavior and mechanical characteristics of sintered rare-earth magnets were investigated. It shows that the fracture behavior and bending strength of the magnets obviously exhibit anisotropy. Sm-Co magnets tend to cleavage fracture in the close-packed (0001) plane or in the ($10\bar{1}1$) plane. The fracture mechanism of $Nd_2Fe_{14}B$ magnet mainly appears to be intergranular fracture. The anisotropy of fracture behavior and mechanical strength of sintered rare-earth magnets is caused mainly by the strong crystal-structure anisotropy and the grain alignment texture. The effects of Nd content, and Pr, Dy substitution on the impact stability of $Nd_2Fe_{14}B$ magnets were also reported.

  • PDF