• 제목/요약/키워드: Iron(III)

검색결과 323건 처리시간 0.023초

친환경 촉매 Iron (III) phosphate: 실온/무용매 반응조건에서 알코올과 페놀의 선택적인 아실화 반응 (Iron (III) Phosphate as a Green and Reusable Catalyst Promoted Chemo Selective Acetylation of Alcohols and Phenols with Acetic Anhydride Under Solvent Free Conditions at Room Temperature)

  • Behbahani, F.K.;Farahani, M.;Oskooie, H.A.
    • 대한화학회지
    • /
    • 제55권4호
    • /
    • pp.633-637
    • /
    • 2011
  • 알코올과 페놀 계 화합물을 아실화시키는 반응에서, iron (III) phosphate 촉매를 사용했을 때에, 좋은 수율로 아실화 화합물을 얻었다. Iron (III) phosphate 촉매는 또한 친환경 반응에 재사용할 수 있는 친환경 촉매이다.

철환원 미생물을 이용한 3가 철의 환원에 관한 연구 (Microbial Reduction of Iron(III) Oxides: Implication for Permeable Reactive Barriers.)

  • 임현정;박재우
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 총회 및 춘계학술발표회
    • /
    • pp.250-253
    • /
    • 2002
  • Remediation of groundwater using zero valent iron filings has received considerable attention in recent years. However, zero valent iron is gradually transformed to iron(III) oxides at permeable reactive barriers, so the reduction of iron(III) oxides can enhance the longevity of the reactive barriers. In this study, microbial reduction of Fe(III) was performed in anaerobic condition. A medium contained nutrients similar to soil solution. The medium was autoclaved and deoxygenated by purging with 99.99% $N_2$ and pH was buffered to 6, while the temperature was regulated as 2$0^{\circ}C$. Activity of iron reducing bacteria were not affected by chlorinated organics but affected by iron(III) oxide. Although perchloroethylene(PCE) was not degraded with only ferric oxide, PCE was reduced to around 50% with ferric oxide and microorganism. It shows that reduced iron can dechlorinate PCE.

  • PDF

철 환원 박테리아에 의한 산화철의 환원과 환원된 철을 이용한 TCE 제거에 관한 연구 (Microbial Reduction of Iron Oxides and Removal of TCE using the Iron Reduced by Iron Reducing Bacteria)

  • 신화영;박재우
    • 대한환경공학회지
    • /
    • 제27권2호
    • /
    • pp.123-129
    • /
    • 2005
  • 철을 이용한 반응벽체 (permeable reactive barrier, PRBs) 기술은 유기 화합물로 오염된 지하수를 환원적 반응에 의해 정화시키는 공법이다. 벽체의 매질로 주로 사용되는 영가 철은 반응이 진행됨에 따라 점차 2가 및 3가 철로 산화되어 제거능이 점차 저감된다. 자연계에 존재하거나 동정된 철 환원 박테리아는 산화된 Fe(III)를 Fe(II)로 환원시키는 능력을 가지고 있으며 이와 같이 환원된 Fe(II)는 반응 표면적을 넓히고 다시 할로겐 유기 화합물을 환원적으로 제거할 수 있도록 한다. 본 연구는 철 환원 박테리아로 순수균인 Shewanella algae BrY에 의한 산화철의 환원 경향을 aqueous phase와 solid phase로 나누어 관찰하고 환원된 철이 TCE 제거에 미치는 영향을 iron(II,III) oxide와 iron(III) oxide를 대상으로 하여 파악하는 것을 목표로 하였다. 박테리아는 배지 내에 존재하는 Fe(III)를 우선적으로 사용하여 Fe(II)로 환원시켰으며 선택성은 떨어지지만 입자상의 산화철 표면에 존재하는 Fe(III)도 환원시켰다. 또한 동량의 산화철이 존재할 때 iron(II,III) oxide에 비해 박테리아가 전자수용체로 사용할 수 있는 Fe(III)가 풍부한 iron(III) oxide의 환원이 더 잘 일어남을 알 수 있었고, 환원된 Fe(II)는 박테리아 또는 다른 철 산화물과 침전을 형성하였으며 TCE와의 반응속도 및 제거 능력을 향상시키는 것으로 판단된다.

Effects of D-Fructose on the Uptake of Iron by the Intestinal Brush-Border Membrane Vesicles from Rats.

  • Kim, Ok-Seon;Lee, Yong-Bok;Oh, In-Joon;Koh, Ik-Bae;Lee, Yeong-Woo
    • Journal of Pharmaceutical Investigation
    • /
    • 제24권3호spc1호
    • /
    • pp.11-18
    • /
    • 1994
  • We have studied the iron uptake by the purified brush-border membrane vesicles (BBMVs) to determine the effect of fructose on the absorption of iron. BBMVs were prepared by the modified calcium precipitation method, The degree of purification was routinely assessed by the marker enzyme, alkaline phosphatase, and the functional integrity was tested by $D-[1-^3H]glucose$ uptake. The appearance of membrane vesicles was shown by transmission electron microscopy (TEM). The uptakes of complexes of labeled iron $[^{59}Fe]$ with fructose and ascorbate were measured with a rapid filtration technique, The uptake rate and pattern of the two iron-complexes, Fe(III)-fructose and Fe(III)-ascorbate, were also observed. A typical overshooting uptake of D-glucose was observed with peak value of $2{\sim}3$ times higher concentration than that at equilibrium. This result was similar to other studies with BBMVs. TEM showed that the size of BBMVs was uniform and we can hardly find any contaminants, Fe(III)-fructose has the higher value of $V_{max}$ and the lower value of Km than those of Fe(III)-ascorbate, respectively. It may be concluded that D-fructose is more effective in promoting the iron absorption than ascorbate.

  • PDF

Iron Mixed Ceramic Pellet for Arsenic Removal from Groundwater

  • Shafiquzzam, Md.;Hasan, Md. Mahmudul;Nakajima, Jun
    • Environmental Engineering Research
    • /
    • 제18권3호
    • /
    • pp.163-168
    • /
    • 2013
  • In this study, an innovative media, iron mixed ceramic pellet (IMCP) has been developed for arsenic (As) removal from groundwater. A porous, solid-phase IMCP (2-3 mm) was manufactured by combining clay soil, rice bran, and Fe(0) powder at $600^{\circ}C$. Both the As(III) and As(V) adsorption characteristics of IMCP were studied in several batch experiments. Structural analysis of the IMCP was conducted using X-ray absorption fine structure (XAFS) analysis to understand the mechanism of As removal. The adsorption of As was found to be dependent on pH, and exhibited strong adsorption of both As(III) and As(V) at pH 5-7. The adsorption process was described to follow a pseudo-second-order reaction, and the adsorption rate of As(V) was greater than that of As(III). The adsorption data were fit well with both Freundlich and Langmuir isotherm models. The maximum adsorption capacities of As(III) and As(V) from the Langmuir isotherm were found to be 4.0 and 4.5 mg/g, respectively. Phosphorus in the water had an adverse effect on both As(III) and As(V) adsorption. Scanning electron microscopy results revealed that iron(III) oxides/hydroxides are aggregated on the surface of IMCP. XAFS analysis showed a partial oxidation of As(III) and adsorption of As(V) onto the iron oxide in the IMCP.

Fluorine-19 NMR Spectroscopic Studies of Phenyl-fluorinated Iron Tetraarylporphyrin Complexes

  • Song, Byung-Ho;Yu, Byung-soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권7호
    • /
    • pp.981-985
    • /
    • 2003
  • Fluorine-19 NMR solution measurements have been made for various phenyl-fluorinated iron porphyrin complexes. Large chemical shifts for phenyl fluorine signals of iron(III) and iron(II) are observed, and these signals are sensitive to electronic structure. The chemical shift differences in ortho-phenyl fluorine signals between high-spin ferric and low-spin ferric tetrakis(pentafluorophenyl)porphyrins are approximately 40 ppm, whereas the differences are approximately 7 ppm between high- and low-spin states of ferrous tetrakis(pentafluorophenyl)porphyrin complexes. Analysis of fluorine-19 isotropic shifts for the iron(III) tetrakis(pentafluorophenyl) porphyrin using fluorine-19 NMR indicates there is a sizable contact contribution at the ortho-phenyl fluorine ring position. Large phenyl fluorine-19 NMR chemical shift values, which are sensitive to the oxidation and spin states, can be utilized for identification of the solution electronic structures of iron(III) and iron(II) porphyrin complexes.

Anodic Stripping Voltammetric Detection of Arsenic(III) at Platinum-Iron(III) Nanoparticle Modified Carbon Nanotube on Glassy Carbon Electrode

  • Shin, Seung-Hyun;Hong, Hun-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3077-3083
    • /
    • 2010
  • The electrochemical detection of As(III) was investigated on a platinum-iron(III) nanoparticles modified multiwalled carbon nanotube on glassy carbon electrode(nanoPt-Fe(III)/MWCNT/GCE) in 0.1 M $H_2SO_4$. The nanoPt-Fe(III)/MWCNT/GCE was prepared via continuous potential cycling in the range from -0.8 to 0.7 V (vs. Ag/AgCl), in 0.1 M KCl solution containing 0.9 mM $K_2PtCl_6$ and 0.6 mM $FeCl_3$. The Pt nanoparticles and iron oxide were co-electrodeposited into the MWCNT-Nafion composite film on GCE. The resulting electrode was examined by cyclic voltammetry (CV), scanning electron microscopy (SEM), and anodic stripping voltammetry (ASV). For the detection of As(III), the nanoPt-Fe(III)/MWCNT/GCE showed low detection limit of 10 nM (0.75 ppb) and high sensitivity of $4.76\;{\mu}A{\mu}M^{-1}$, while the World Health Organization's guideline value of arsenic for drinking water is 10 ppb. It is worth to note that the electrode presents no interference from copper ion, which is the most serious interfering species in arsenic detection.

Reduction of Dissolved Fe(III) by As(V)-tolerant Bacteria Isolated from Rhizosphere Soil

  • Khanal, Anamika;Song, Yoonjin;Cho, Ahyeon;Lee, Ji-Hoon
    • 한국환경농학회지
    • /
    • 제40권1호
    • /
    • pp.67-72
    • /
    • 2021
  • BACKGROUND: Biological iron redox transformation alters iron minerals, which may act as effective adsorbents for arsenate [As(V)] in the environments. In the viewpoint of alleviating arsenate, microbial Fe(III) reduction was sought under high concentration of As(V). In this study, Fe(III)-reducing bacteria were isolated from the wild plant rhizosphere soils collected at abandoned mine areas, which showed tolerance to high concentration of As(V), in pursuit of potential agents for As(V) bioremediation. METHODS AND RESULTS: Bacterial isolation was performed by a series of enrichment, transfer, and dilutions. Among the isolated strains, two strains (JSAR-1 and JSAR-3) with abilities of tolerance to 10 mM As(V) and Fe(III) reduction were selected. Phylogenetic analysis using 16S rRNA genesequences indicated the closest members of Pseudomonas stutzeri DSM 5190 and Paenibacillus selenii W126, respectively for JSAR-1 and JSAR-3. Ferric and ferrous iron concentrations were measured by ferrozine assay, and arsenic concentration was analyzed by ICP-AES, suggesting inability of As(V) reduction whereas ability of Fe(III) reduction. CONCLUSION: Fe(III)-reducing bacteria isolated from the enrichments with arsenate and ferric iron were found to be resistant to a high concentration of As(III) at 10 mM. We suppose that those kinds of microorganisms may suggest good application potentials for As(V) bioremediation, since the bacteria can transform Fe while surviving under As-contaminated environments. The isolated Fe(III)-reducing bacterial strains could contribute to transformations of iron minerals which may act as effective adsorbents for arsenate, and therefore contribute to As(V) immobilization

시차펄스전압전류법에서 도데실황산나트륨이 수식된 유리탄소전극에 의한 선택성 있는 철(III) 이온의 정량 (Differential Pulse Voltammetric Determination of Iron(III) Ion with a Sodium Dodecyl Sulfate Modified Glassy Carbon Electrode)

  • 고영춘;김진아;정근호
    • 분석과학
    • /
    • 제10권6호
    • /
    • pp.427-432
    • /
    • 1997
  • 도데실황산나트륨(SDS)이 수식된 유리탄소전극에 의해 철(III) 이온의 정량분석이 선택성 있게 제안되었다. 이것은 SDS와 $Fe^{3+}$의 정전기적 인력으로 착물이 형성되는 데 근거한 것이다. 철(III) 이온의 정량분석은 시차펄스전압전류법(DPV)에 의해 하였고, 그 정량분석을 위한 $(DS^-)_n-Fe^{3+}$의 환원 피크는 +0.466(${\pm}0.002$)volt (vs. Ag/AgCl)였다. 철(III) 이온의 정랑분석을 위한 검량선은 $0.50{\times}10^{-5}{\sim}10{\times}10^{-5}mol/L$의 농도 범위에서 얻었으며, 검출한계는 $0.14{\times}10^{-5}mol/L$였다. $Cu^{2+}$, $Ni^{2+}$, $Co^{2+}$, $Pb^{2+}$, $Zn^{2+}$$Mn^{2+}$는 철(III) 이온의 정량에 거의 영향을 미치지 않으나, $CN^- $$SCN^-$은 철(III) 이온의 정량을 크게 방해하였다.

  • PDF

점토로부터 철불순물의 생물학적 제거에 미치는 탄소원의 영향

  • 이은영;조경숙;류희욱;배무
    • 한국미생물·생명공학회지
    • /
    • 제25권6호
    • /
    • pp.552-559
    • /
    • 1997
  • Fe (III) impurities in clay could be microbially removed by inhabitant dissimilatory Fe (III) reducing microorganisms. Insoluble Fe (III) in clay particles was leached out as soluble reductive form, Fe (II). The microorganisms removed from 10 to 45% of the initial Fe (III) when each sugar was supplemented to be in ranges of 1 - 5 % (w/w; sugar/clay). The microorganisms reduced 2.1 - 12.8 mol of Fe (III) per 100 mol of carbon in sugars metabolized when sugars such as glucose, maltose, and sucrose were used as sole carbon source. Bacillus sp. IRB-W and Pseudomonas sp. IRB-Y were isolated from the enrichment culture of the clay. The isolates were considered to participate in metabolizing organic compounds to fermentative intermediates with relatively little Fe (III) reduction at initial Fe (III) reduction process. By the microbial treatment, the whiteness of the clay was increased form 63.20 to 79.64, whereas the redness was obviously decreased form 13.47 to 3.55. This treatment did not cause any unfavorable modifications in mineralogical compositions of the clay.

  • PDF