• Title/Summary/Keyword: Iris Recognition System

Search Result 98, Processing Time 0.027 seconds

Steganography based Multi-modal Biometrics System

  • Go, Hyoun-Joo;Moon, Dae-Sung;Moon, Ki-Young;Chun, Myung-Geun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.71-76
    • /
    • 2007
  • This paper deals with implementing a steganography based multi-modal biometric system. For this purpose, we construct a multi-biometrics system based on the face and iris recognition. Here, the feature vector of iris pattern is hidden in the face image. The recognition system is designed by the fuzzy-based Linear Discriminant Analysis(LDA), which is an expanded approach of the LDA method combined by the theory of fuzzy sets. Furthermore, we present a watermarking method that can embed iris information into face images. Finally, we show the advantages of the proposed watermarking scheme by computing the ROC curves and make some comparisons recognition rates of watermarked face images with those of original ones. From various experiments, we found that our proposed scheme could be used for establishing efficient and secure multi-modal biometric systems.

Design and Implementation of Embedded LINUX-Based System for Iris Recognition System (홍채인식 시스템을 위한 임베디드 시스템의 설계 및 구현)

  • 임철수;박병섭
    • The Journal of the Korea Contents Association
    • /
    • v.3 no.3
    • /
    • pp.47-54
    • /
    • 2003
  • In this paper, we implemented embedded LNUX-based UI(User Interface) board which can be applied to Human Iris recognition product. for this purpose, we also analyzed and designed LNUX operating system and adapted boot loader, kernel, control program modules according to the developed H/W architectures. As the experimental results shows that Iris recognition system is operable and embedded LNUX-based UI board which is connected to heterogeneous system by TCP/IP protocol can both successfully send and receive data this UI board has been able to obtain high performance.

  • PDF

A Fast Iris Feature Extraction Method For Embedded System (Embedded 시스템을 위한 고속의 홍채특징 추출 방법)

  • Choi, Chang-Soo;Min, Man-Gi;Jun, Byoung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.128-134
    • /
    • 2009
  • Iris recognition is a biometric technology which can identify a person using the iris pattern. Recently, using iris information is used in many fields such as access control and information security. But Perform complex operations to extract features of the iris. because High-end hardware for real-time iris recognition is required. This paper is appropriate for the embedded environment using local gradient histogram embedded system using iris feature extraction methods have implement. Experimental results show that the performance of proposed method is comparable to existing methods using Gabor transform noticeably improves recognition performance and it is noted that the processing time of the local gradient histogram transform is much faster than that of the existing method and rotation was also a strong attribute.

A Study on Iris Image Restoration Based on Focus Value of Iris Image (홍채 영상 초점 값에 기반한 홍채 영상 복원 연구)

  • Kang Byung-Jun;Park Kang-Ryoung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.30-39
    • /
    • 2006
  • Iris recognition is that identifies a user based on the unique iris texture patterns which has the functionalities of dilating or contracting pupil region. Iris recognition systems extract the iris pattern in iris image captured by iris recognition camera. Therefore performance of iris recognition is affected by the quality of iris image which includes iris pattern. If iris image is blurred, iris pattern is transformed. It causes FRR(False Rejection Error) to be increased. Optical defocusing is the main factor to make blurred iris images. In conventional iris recognition camera, they use two kinds of focusing methods such as lilted and auto-focusing method. In case of fixed focusing method, the users should repeatedly align their eyes in DOF(Depth of Field), while the iris recognition system acquires good focused is image. Therefore it can give much inconvenience to the users. In case of auto-focusing method, the iris recognition camera moves focus lens with auto-focusing algorithm for capturing the best focused image. However, that needs additional H/W equipment such as distance measuring sensor between users and camera lens, and motor to move focus lens. Therefore the size and cost of iris recognition camera are increased and this kind of camera cannot be used for small sized mobile device. To overcome those problems, we propose method to increase DOF by iris image restoration algorithm based on focus value of iris image. When we tested our proposed algorithm with BM-ET100 made by Panasonic, we could increase operation range from 48-53cm to 46-56cm.

A Iris Recognition Using Zernike Moment and Wavelet (Zernike 모멘트와 Wavelet을 이용한 홍채인식)

  • Choi, Chang-Soo;Park, Jong-Cheon;Jun, Byoung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4568-4575
    • /
    • 2010
  • Iris recognition is a biometric technology that uses iris pattern information, which has features of stability, security etc. Because of this reason, it is especially appropriate under certain circumstances of requiring a high security. Recently, using the iris information has a variety uses in the fields of access control and information security. In extracting the iris feature, it is desirable to extract the feature which is invariant to size, lights, rotation. We have easy solutions to the problem of iris size and lights by previous processing but there is still problem of iris feature extract invariant to rotation. In this paper, To improve an awareness ratio and decline in speed for a revision of rotation, it is proposed that the iris recognition method using Zernike Moment and Daubechies Wavelet. At first step, the proposed method groups rotated iris into similar things by statistical feature of Zernike Moment invariant to a rotation, which shortens processing time of iris recognition and looks equal to an established method in the performance of recognition too. therefore, proposed method could confirm the possibility of effective application for large scale iris recognition system.

A Study on the Restoration of a Low-Resoltuion Iris Image into a High-Resolution One Based on Multiple Multi-Layered Perceptrons (다중 다층 퍼셉트론을 이용한 저해상도 홍채 영상의 고해상도 복원 연구)

  • Shin, Kwang-Yong;Kang, Byung-Jun;Park, Kang-Ryoung;Shin, Jae-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.3
    • /
    • pp.438-456
    • /
    • 2010
  • Iris recognition uses a unique iris pattern of user to identify person. In order to enhance the performance of iris recognition, it is reported that the diameter of iris region should be greater than 200 pixels in the captured iris image. So, the previous iris system used zoom lens camera, which can increase the size and cost of system. To overcome these problems, we propose a new method of enhancing the accuracy of iris recognition on low-resolution iris images which are captured without a zoom lens. This research is novel in the following two ways compared to previous works. First, this research is the first one to analyze the performance degradation of iris recognition according to the decrease of the image resolution by excluding other factors such as image blurring and the occlusion of eyelid and eyelash. Second, in order to restore a high-resolution iris image from single low-resolution one, we propose a new method based on multiple multi-layered perceptrons (MLPs) which are trained according to the edge direction of iris patterns. From that, the accuracy of iris recognition with the restored images was much enhanced. Experimental results showed that when the iris images down-sampled by 6% compared to the original image were restored into the high resolution ones by using the proposed method, the EER of iris recognition was reduced as much as 0.133% (1.485% - 1.352%) in comparison with that by using bi-linear interpolation

Presentation Attack Detection (PAD) for Iris Recognition System on Mobile Devices-A Survey

  • Motwakel, Abdelwahed;Hilal, Anwer Mustafa;Hamza, Manar Ahmed;Ghoneim, Hesham E.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.415-426
    • /
    • 2021
  • The implementation of iris biometrics on smartphone devices has recently become an emerging research topic. As the use of iris biometrics on smartphone devices becomes more widely adopted, it is to be expected that there will be similar efforts in the research community to beat the biometric by exploring new spoofing methods and this will drive a corresponding requirement for new liveness detection methods. In this paper we addresses the problem of presentation attacks (Spoofing) against the Iris Recognition System on mobile devices and propose novel Presentation Attack Detection (PAD) method which suitable for mobile environment.

A Study on Extraction of Irregular Iris Patterns (비정형 홍채 패턴 분리에 관한 연구)

  • Won, Jung-Woo;Cho, Seong-Won;Kim, Jae-Min;Baik, Kang-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.169-174
    • /
    • 2008
  • Recently, biometric systems are of interest for the reliable security system. Iris recognition technology is one of the biometric system with the highest reliability. Various iris recognition methods have been proposed for automatic personal identification and verification. These methods require accurate iris segmentation for successful processing because the iris is a small part of an acquired image. The iris boundaries have been parametrically modeled and subsequently detected by circles or parabolic arcs. Since the iris boundaries have a wide range of edge contrast and irregular border shapes, the assumption that they can be fit to circles or parabolic arcs is not always valid. In some cases, the shape of a dilated pupil is slightly different from a constricted one. This is especially true when the pupil has an irregular shape. This is why this research is important. This paper addresses how to accurately detect iris boundaries for improved iris recognition, which is robust to noises.

An Intelligent Iris Recognition System (지능형 홍채 인식 시스템)

  • Kim, Jae-Min;Cho, Seong-Won;Kim, Soo-Lin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.468-472
    • /
    • 2004
  • This paper presents an intelligent iris recognition system which consists of quality check, iris localization, feature extraction, and verification. For the quality check, the local statistics on the pupil boundary is used. Gaussian mixture model is used to segment and localized the iris region. The feature extraction method is based on an optimal waveform simplification. For the verification, we use an intelligent variable threshold.

Robust-to-rotation Iris Recognition Using Local Gradient Orientation Histogram (국부적 그래디언트 방향 히스토그램을 이용한 회전에 강인한 홍채 인식)

  • Choi, Chang-Soo;Jun, Byoung-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3C
    • /
    • pp.268-273
    • /
    • 2009
  • Iris recognition is a biometric technology which can identify a person using the iris pattern. It is important for the iris recognition system to extract the feature which is invariant to changes in iris patterns. Those changes can be occurred by the influence of lights, changes in the size of the pupil, and head tilting. In this paper, we propose a novel method based on local gradient orientation histogram which is robust to variations in illumination and rotations of iris patterns. The proposed method enables high-speed feature extraction and feature comparison because it requires no additional processing to obtain the rotation invariance, and shows comparable performance to the well-known previous methods.