• Title/Summary/Keyword: Iris Data Classification

Search Result 43, Processing Time 0.021 seconds

The Design of GA-based TSK Fuzzy Classifier and Its application (GA기반 TSK 퍼지 분류기의 설계 및 응용)

  • 곽근창;김승석;유정웅;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.233-236
    • /
    • 2001
  • In this paper, we propose a TSK-type fuzzy classifier using PCA(Principal Component Analysis), FCM(Fuzzy C-Means) clustering and hybrid GA(genetic algorithm). First, input data is transformed to reduce correlation among the data components by PCA. FCM clustering is applied to obtain a initial TSK-type fuzzy classifier. Parameter identification is performed by AGA(Adaptive Genetic Algorithm) and RLSE(Recursive Least Square Estimate). we applied the proposed method to Iris data classification problems and obtained a better performance than previous works.

  • PDF

An Efficient Quadratic Projection-Based Iris Recognition: Performance Improvements of Iris Recognition Using Dual QML (효율적인 Quadratic Projection 기반 홍채 인식: Dual QML을 적용한 홍채 인식의 성능 개선 방안)

  • Kwon, Taeyean;Noh, Geontae;Jeong, Ik Rae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.1
    • /
    • pp.85-93
    • /
    • 2018
  • Biometric user authentications, day after day, propagate more to human life instead of traditional systems which use passwords and ID cards. However, most of these systems have many problems for given biometric information such noisy data, low-quality data, a limitation of recognition rate, and so on. To deal with these problems, I used Dual QML which is non-linear classification for classifying correctly the real-world data and then proposed preprocessing method for increasing recognition rate and performance by segmenting a specific region on an image. The previous published Dual QML used face, palmprint, ear for the experiment. In this paper, I used iris for experiment and then proved excellence of Dual QML at iris recognition. Finally I demonstrated these results (e.g. increasing recognition rate and performance, suitability for iris recognition) through experiments.

Improving SVM Classification by Constructing Ensemble (앙상블 구성을 이용한 SVM 분류성능의 향상)

  • 제홍모;방승양
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.251-258
    • /
    • 2003
  • A support vector machine (SVM) is supposed to provide a good generalization performance, but the actual performance of a actually implemented SVM is often far from the theoretically expected level. This is largely because the implementation is based on an approximated algorithm, due to the high complexity of time and space. To improve this limitation, we propose ensemble of SVMs by using Bagging (bootstrap aggregating) and Boosting. By a Bagging stage each individual SVM is trained independently using randomly chosen training samples via a bootstrap technique. By a Boosting stage an individual SVM is trained by choosing training samples according to their probability distribution. The probability distribution is updated by the error of independent classifiers, and the process is iterated. After the training stage, they are aggregated to make a collective decision in several ways, such ai majority voting, the LSE(least squares estimation) -based weighting, and double layer hierarchical combining. The simulation results for IRIS data classification, the hand-written digit recognition and Face detection show that the proposed SVM ensembles greatly outperforms a single SVM in terms of classification accuracy.

New Inference for a Multiclass Gaussian Process Classification Model using a Variational Bayesian EM Algorithm and Laplace Approximation

  • Cho, Wanhyun;Kim, Sangkyoon;Park, Soonyoung
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.202-208
    • /
    • 2015
  • In this study, we propose a new inference algorithm for a multiclass Gaussian process classification model using a variational EM framework and the Laplace approximation (LA) technique. This is performed in two steps, called expectation and maximization. First, in the expectation step (E-step), using Bayes' theorem and the LA technique, we derive the approximate posterior distribution of the latent function, indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. In the maximization step, we compute the maximum likelihood estimators for hyper-parameters of a covariance matrix necessary to define the prior distribution of the latent function by using the posterior distribution derived in the E-step. These steps iteratively repeat until a convergence condition is satisfied. Moreover, we conducted the experiments by using synthetic data and Iris data in order to verify the performance of the proposed algorithm. Experimental results reveal that the proposed algorithm shows good performance on these datasets.

Model Selection in Artificial Neural Network

  • Kim, Byung Joo
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.57-65
    • /
    • 2018
  • Artificial neural network is inspired by the biological neural network. For simplicity, in computer science, it is represented as a set of layers. Many research has been made in evaluating the number of neurons in the hidden layer but still, none was accurate. Several methods are used until now which do not provide the exact formula for calculating the number of thehidden layer as well as the number of neurons in each hidden layer. In this paper model selection approach was presented. Proposed model is based on geographical analysis of decision boundary. Proposed model selection method is useful when we know the distribution of the training data set. To evaluate the performance of the proposed method we compare it to the traditional architecture on IRIS classification problem. According to the experimental result on Iris data proposed method is turned out to be a powerful one.

Learning Networks for Learning the Pattern Vectors causing Classification Error (분류오차유발 패턴벡터 학습을 위한 학습네트워크)

  • Lee Yong-Gu;Choi Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.77-86
    • /
    • 2005
  • In this paper, we designed a learning algorithm of LVQ that extracts classification errors and learns ones and improves classification performance. The proposed LVQ learning algorithm is the learning Networks which is use SOM to learn initial reference vectors and out-star learning algorithm to determine the class of the output neurons of LVQ. To extract pattern vectors which cause classification errors, we proposed the error-cause condition, which uses that condition and constructed the pattern vector space which consists of the input pattern vectors that cause the classification errors and learned these pattern vectors , and improved performance of the pattern classification. To prove the performance of the proposed learning algorithm, the simulation is performed by using training vectors and test vectors that are Fisher' Iris data and EMG data, and classification performance of the proposed learning method is compared with ones of the conventional LVQ, and it was a confirmation that the proposed learning method is more successful classification than the conventional classification.

  • PDF

A Fuzzy-Rough Classification Method to Minimize the Coupling Problem of Rules (규칙의 커플링문제를 최소화하기 위한 퍼지-러프 분류방법)

  • Son, Chang-S.;Chung, Hwan-M.;Seo, Suk-T.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.460-465
    • /
    • 2007
  • In this paper, we propose a novel pattern classification method based on statistical properties of the given data and fuzzy-rough set to minimize the coupling problem of the rules. In the proposed method, statistical properties is used by a selection criteria for deciding a partition number of antecedent fuzzy sets, and for minimizing an coupling problem of the generated rules. Moreover, rough set is used as a tool to remove unnecessary attributes between generated rules from the numerical data. In order to verify the validity of the proposed method, we compared the classification results (i.e, classification precision) of the proposed with the conventional pattern classification methods on the Fisher's IRIS data. From experiment results, we can conclude that the proposed method shows relatively better performance than those of the classification methods based on the conventional approaches.

Proposal of Weight Adjustment Methods Using Statistical Information in Fuzzy Weighted Mean Classifiers (퍼지 가중치 평균 분류기에서 통계 정보를 활용한 가중치 설정 기법의 제안)

  • Woo, Young-Woon;Heo, Gyeong-Yong;Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.9-15
    • /
    • 2009
  • The fuzzy weighted mean classifier is one of the most common classification models and could achieve high performance by adjusting the weights. However, the weights were generally decided based on the experience of experts, which made the resulting classifiers to suffer the lack of consistency and objectivity. To resolve this problem, in this paper, a weight deciding method based on the statistics of the data is introduced, which ensures the learned classifiers to be consistent and objective. To investigate the effectiveness of the proposed methods, Iris data set available from UCI machine learning repository is used and promising results are obtained.

The Modified LVQ method for Performance Improvement of Pattern Classification (패턴 분류 성능을 개선하기 위한 수정된 LVQ 방식)

  • Eom Ki-Hwan;Jung Kyung-Kwon;Chung Sung-Boo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.2 s.308
    • /
    • pp.33-39
    • /
    • 2006
  • This paper presents the modified LVQ method for performance improvement of pattern classification. The proposed method uses the skewness of probability distribution between the input vectors and the reference vectors. During training, the reference vectors are closest to the input vectors using the probabilistic distribution of the input vectors, and they are positioned to approximate the decision surfaces of the theoretical Bayes classifier. In order to verify the effectiveness of the proposed method, we performed experiments on the Gaussian distribution data set, and the Fisher's IRIS data set. The experimental results show that the proposed method considerably improves on the performance of the LVQ1, LVQ2, and GLVQ.

Statistical Information-Based Hierarchical Fuzzy-Rough Classification Approach (통계적 정보기반 계층적 퍼지-러프 분류기법)

  • Son, Chang-S.;Seo, Suk-T.;Chung, Hwan-M.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.792-798
    • /
    • 2007
  • In this paper, we propose a hierarchical fuzzy-rough classification method based on statistical information for maximizing the performance of pattern classification and reducing the number of rules without learning approaches such as neural network, genetic algorithm. In the proposed method, statistical information is used for extracting the partition intervals of antecedent fuzzy sets at each layer on hierarchical fuzzy-rough classification systems and rough sets are used for minimizing the number of fuzzy if-then rules which are associated with the partition intervals extracted by statistical information. To show the effectiveness of the proposed method, we compared the classification results(e.g. the classification accuracy and the number of rules) of the proposed with those of the conventional methods on the Fisher's IRIS data. From the experimental results, we can confirm the fact that the proposed method considers only statistical information of the given data is similar to the classification performance of the conventional methods.