• 제목/요약/키워드: Iridium oxide

검색결과 30건 처리시간 0.03초

Highly Efficient Cold Sputtered Iridium Oxide Films for Polyimide based Neural Stimulation Electrodes

  • Kim, Shin-Ae;Kim, Eui-Tae;Kim, Sung-June
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권3호
    • /
    • pp.199-204
    • /
    • 2009
  • Iridium oxide films (IROFs) have been extensively studied as a material for electrical stimulation of neurons, as iridium oxide has higher charge storage capacity than other metal films. More recently, sputtered iridium oxide film (SIROF) has been studied, because it can be made more conveniently than activated iridium oxide film (AIROF). Typically, the SIROFs are grown at temperatures from 400 to 600 $^{\circ}C$. However, such high temperatures cannot be used when the iridium oxide (IrOx) film is to be deposited on a flexible polymer material, such as polyimide. In this paper, we show that we can still obtain excellent characteristics in SIROFs grown without heating (cold SIROF), by optimizing the growth conditions. We show that the oxygen flow rate is a critical parameter for controlling the surface properties of a cold SIROF. At an oxygen flow rate of 12 seem, the cold SIROF exhibited a charge storage capacity (CSC) of 60 mC/cm$^2$, which is comparable to or better than other published values for iridium oxide films including heated SIROFs. The film produced under these conditions also had the minimum impedance value of all cold SIROFs deposited for this study. A stability test and biocompatibility test also demonstrated the superiority of the optimized cold SIROF.

Surface Renewable Hydrogen Ion-Selective Polymeric Composite Electrode Containing Iridium Oxide

  • Quan, Hongmei;Kim, Won;Chung, Koo-Chun;Park, Jong-Man
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권10호
    • /
    • pp.1565-1568
    • /
    • 2005
  • A surface renewable pH electrode was prepared by utilizing composite electrode technique. Iridium oxide micro-fine particles was prepared by hydrolysis of $(NH_4)_2IrCl_6$ at elevated temperature. The iridium oxide particles were mixed with well-dispersed carbon black and then filtered. The mixture was suspended in DMF containing PVC as a binder. The mixture was precipitated rapidly by adding large amount of water. The precipitate was ground and pressure-molded to iridium oxide composite electrode material. The electrode showed linear response between pH 1-13 with 50 to 60 mV/pH slope. The electrode maintained the pH response without appreciable slope drift for 170 days if stored in deionized water. The electrode surface can be renewed reproducibly by simple grinding process whenever contaminated or deactivated.

산화 이리듐의 물의 산화반응에 대한 버블 과전압 현상과 촉매 특성 연구 (Study on Electrocatalytic Water Oxidation Reaction by Iridium Oxide and Its Bubble Overpotential Effect)

  • 김정중;최용수;권성중
    • 전기화학회지
    • /
    • 제16권2호
    • /
    • pp.70-73
    • /
    • 2013
  • 산화 이리듐은 물의 산화반응에 대해 좋은 전기촉매 물질로서 많은 연구가 이루어 지고 있다. 최근 전기화학적 증폭방법을 이용하여 산화 이리듐 나노입자의 개별적인 촉매특성을 연구한 결과를 보면 촉매반응에 의한 전류가 지속적으로 유지되지 않고 시간에 따라 감소하는 결과가 얻어 졌다. 이러한 촉매특성의 사라짐에 대한 원인을 규명하고자 사이즈가 큰 이리듐전극을 산화시킨 산화이리듐 전극에서 물의 산화반응을 진행시켰다. 그 결과 나노입자에서와 유사하게 전류가 감소하는 현상이 관찰되었다. 큰 전극에서의 실험에서는 발생하는 산소방울을 관찰 할 수 있었는데 산소방울의 발생 주기가 전류의 증감주기와 일치하는 것으로 보아 전류의 감소는 산소방울에 의한 버블 과전압 때문으로 생각된다.

STIMULATING NEURAL ELECTRODE-A STUDY ON CHARGE INJECTION PROPERTIES OF IRIDIUM OXIDE FILMS

  • Lee, In-Seop;Ray A. Buchanan;Jim M.Williams
    • 한국진공학회지
    • /
    • 제4권S2호
    • /
    • pp.156-162
    • /
    • 1995
  • For a stimulating neural electrode, the charge density should be as large as possible to provide adequate stimulation of the nervous system while allowing for miniaturization of the electrode. Since iridium oxide is able to produce high charge densities while preventing undesirable reactions due to charge storage, it has become a promising material for neural prostheses. Successful production of stable Ir and Ir oxide films on various substrates now limits the use of this material. Ir was deposited on two differently prepared surface of (mirror finish, passivation) surgical Ti-6AI-4V with several methods. Ion beam mixing of sputter deposited Ir films on passivated Ti-6AI-4V produced stable and good adherent Ir films. It was found that the increase in charge density of pure Ir on continuous cyclingis due to the accumulation of the oxide phase ( associated with a large surface area) in which the valence state of iridium changes and the double-layer capacitance increases. This study also showed that the double layer capacitance is equally or even more responsible for the high charge density of anodically formed Ir oxide.

  • PDF

Observation of Electrocatalytic Amplification of Iridium Oxide (IrOx) Single Nanoparticle Collision on Copper Ultramicroelectrodes

  • Choi, Yong Soo;Jung, Seung Yeon;Joo, Jin Woo;Kwon, Seong Jung
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2519-2522
    • /
    • 2014
  • Recently, the observation of the electrocatalytic behavior of individual nanoparticles (NPs) by electrochemical amplification method has been reported. For example, the Iridium oxide ($IrO_x$) NP collision on the Pt UME was observed via electrocatalytic water oxidation. However, the bare Pt UME had poor reproducibility for the observation of NP collision signal and required an inconvenient surface pre-treatment for the usage. In this manuscript, we has been investigated other metal electrode such as Cu UME for the reproducible data analysis and convenient use. The $IrO_x$ NP collision was successively observed on the bare Cu UME and the reproducibility in collision frequency was improved comparing with previous case using the $NaBH_4$ pre-treated Pt UME. Also, the adhesion coefficient between NP and the Cu UME was studied for better understanding of the single NP collision system.

비대칭 마크네트론 스퍼터링을 이용한 이리듐 산화물 박막의 합성과 전기 화학적 특성분석 (Electro-Chemical Properties of Iridium Oxide Coated Ti Electrode Synthesized by Unbalanced Magnetron Sputtering Process)

  • 김성대;김상식;송진호
    • 한국표면공학회지
    • /
    • 제40권5호
    • /
    • pp.203-208
    • /
    • 2007
  • Preliminary studies were conducted to develop a dimensionally stable anode (DSA)electrode prepared by reactive sputtering method. The microstructure, surface morphology and electrochemical properties of iridium oxide $(IrO_2)$ coatings synthesized by unbalanced magnetron sputtering (UBMS) and conventional DSA electrode were compared. In addition, the possibilities of $IrO_2$ films synthesized by UMB on a real DSA electrode were investigated by electro-chemical application test. The degree of non-stoichiometry and surface area were closely related to the electro-chemical activity of the $IrO_2$ electrode. The feasibility of making a DSA electrode prepared by PVD technique was demonstrated through the present work.

스크린 프린팅 탄소 전극의 이리듐 산화물 표면 개질과 이의 임피던스 센서 응용 (Surface Modification of a Screen-printed Carbon Electrode with Iridium Oxide and Its Application of an Impedance Sensor)

  • 길민식;윤조희;장진우;최봉길
    • 공업화학
    • /
    • 제34권5호
    • /
    • pp.493-500
    • /
    • 2023
  • 본 연구에서는 스크린 프린팅 공정을 통해 탄소 잉크 기반의 2상 전극을 제작하고, 전극 표면에 이리듐 산화물(IrOx)을 코팅함으로써 전극의 분극 현상을 제어할 수 있는 임피던스 센서를 개발하였다. IrOx는 순환 전압 전류법으로 탄소 전극의 표면 위에 순환 수(0~50 cycles)에 따라서 코팅되었다. 전자주사현미경을 이용하여 cycle 수가 증가할수록 IrOx 입자의 크기와 수가 증가하는 경향성을 확인하였다. 전기화학 임피던스 분석을 이용하여 상기 제조된 센서들의 NaCl 농도에 따른 임피던스 변화 값을 조사하였다. 50 cycle에서 제조된 센서가 가장 우수한 결정계수와 재현성을 나타내었으며, 이는 분극 현상이 잘 제어되었기 때문이다. 실제 용액 샘플들을 이용한 삼투압 장비와 비교 측정 실험을 수행함으로써 IrOx 기반 센서의 안구건조증 진단 센서로의 활용가치를 증명하였다.

복합 촉매 전극의 제조 및 전기화학적 특성에 관한 연구 (Study on Electrochemical Characteristics and Fabrication of Catalytic Electrode)

  • 민병승;정원섭;김광호;민병철;이미혜
    • 한국표면공학회지
    • /
    • 제35권6호
    • /
    • pp.401-407
    • /
    • 2002
  • Most of organic compounds discharged from industrial wastewater are treated by chemical oxidation, adsorption and biodegradable process. This process has been demanded a new advanced environmental wastewater treatment process. From this point of view, an electrochemical oxidation process using electrocatalysts has been developed for the destruction of organic compounds. Through this study, a ruthenium oxide/iridium oxide supported on titanium expanded metal was fabricated by thermal decomposition method and its performance was excellent during this experiment.