• Title/Summary/Keyword: Ir-192 source

Search Result 74, Processing Time 0.02 seconds

Determination of Exposure Dose Rate and Isotropic Distributions of Substitute High Dose Rate Ir-192 Source for Co-60 Brachytherapy Source (원격강내조사용 Co-60 선원의 대체용 Ir-192 선원의 조사선량결정 및 선량 등방성조사)

  • 최태진;원철호;김옥배;김시운;김금배;조운갑;한현수;박경배
    • Progress in Medical Physics
    • /
    • v.9 no.1
    • /
    • pp.55-64
    • /
    • 1998
  • In recent, the demand of development of the high dose rate brachytherapy source increased for substitute for Co-60 source by iridium source, since the supplying Co-60 source is very depressed and the high dose rate brachytherapy sources are entirely imported from the abroad. This study investigated the exposure rates and isotropic dose distributions for the Ir-192 source produced from $\^$191/Ir(n,r)$\^$192/Ir by nuclear reactor in Korea Atomic Energy Research Institute. The activity of source was obtained an 1.012 Ci (the initial activity without encapsulation was 2,87Ci) by measurement with encapsuled stainless steel. The exposure rate of provided Ir-192 source was determined on 6.36 ${\pm}$ 0.147 Rm$^2$/h-GBq (2.350 ${\pm}$ 0.054 Rcm$^2$/mCi-hr) within ${\pm}$ 2.2% discrepancy with IC-10 ion chamber (0.14 cc) which was mounted on the acrylic jig to 5, 10 and 20 cm from the center of source. The calculated doses with 22 most significant spectrum lines were corrected with intrinsic efficiency of the germanium detector were compared to measured exposure dose rates within ${\pm}$3.8 % discrepancy. The authors confirmed the high dose rate Ir-192 source could be replaced the long decayed Co-60 source via investigation of the isotropic dose distributions in lateral, source axis and diagonal direction of source center are very closed to within 3% uncertainties. Especially, this exposure rate constant and isotropic dose distribution will be fundamental to build the high dose rate source and develop the computed therapy planning system.

  • PDF

The Dose Characteristics of Designed Ir-192 Micro-source for Brachytherapy (근접조사용 Ir-192 마이크로선원의 디자인과 선량 특성)

  • 최태진;김진희
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.81-89
    • /
    • 2003
  • The dose distributions of designed Ir-192 micro-source were investigated by dose computations which were accomplished by employing shape of encapsule material and thickness of the source for self-absorption. The computation dose derived from air-kerma rate (S$_{k}$ ) and dose rate constant (Λ) includes the anisotropy of dose distribution around the source. We got the dose rate constants in a water medium is 1.154 cGy h$^{-1}$ U$^{-1}$ . The size of the source was 0.5 mm in diameter and 3.5 mm in length and it was encapsuled in 1.1 mm$\Phi$${\times}$5.5 mm of stainless steel sealed with 0.3 mm of filter thickness. The tissue dose of reference point at 1.0 cm radial distance of the source axis was delivered 1.154 Uh$^{-1}$ (1.3167${\times}$10$^{-3}$ cGy/mCi-sec) from the S$_{k}$ 4.108U/mCi of Ir-192 source. The filtration effect contributed to air-kerma strength as exponential filtering effect of 86.2% in total attenuation, but self-absorption was 88.4% from radial dose distributions. In particular, the dose attenuations showed a rapid anisotropic distributions as 56% of reference dose along to $\pm$10 degrees from the tip of source axis and 50% for of that to source-cable direction. We persist in use the large diameter of applicator will avoid the dose anisotropy by the filtered attenuation effects along the axis of Ir-192 micro-source.

  • PDF

Development and Application of Ir-192 Brachytherapy Source in Korea (국산 근접치료용 Ir-192 선원의 개발 및 실용화 동향)

  • Son, Kwang Jae;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.326-332
    • /
    • 2012
  • Recently, there are difficulties in operating brachtherapy machine in the radiotherapy department because of increasing the source price with decreasing nuclear reactor in the world. The development and technical features of the Ir-192 HDR sources (4.5 mm, 1.1 mm in diameter) in Korea were described in this report. We expect that this report will be helpful for hospitals to make the long-term plan for operating and managing HDR brachytherapy machine.

Characteristics of Tissue Dose of High Dose Rate Ir-192 Source Substitution for Co-60 Brachytherapy Source (코발트-60 선원 대체용 고선량률 Ir-192 선원의 조직선량특성)

  • 최태진;이호준;김옥배
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.259-266
    • /
    • 1998
  • To achieve the 2D dose distribution around the designed high dose rate Ir-192 source substitution for Co-60 brachytherapy source, we determined the exposure rate constant and tissue attenuation factors as a large depth as a 20 cm from source center. The exposure rate constant is used for apparent activity in designed source with self-absorption and encapsulation steel wall. The tissue dose delivered from the 4401 segments of 2.5 mm in a diameter and 2.5 mm height of disk-type source layer. In the experiments, the tissue attenuation factors include the tissue attenuation and multiple scattering in a medium surrounding the source. The fitted the polynomial regression with 4th order for the tissue attenuation factors are very closed to the experimental measurement data within ${\pm}$1% discrepancy. The Meisberger's constant showed the large uncertainty in large distance from source. The exposure rate constant 4.69 Rcm$^2$/mCi-hr was currently used for determination of apparent activity of source and air kerma strength was obtained 0.973 for tissue absorbed dose from the energy spectrum of Ir-192 source. In our experiments with designed high dose rate brachytherapy source, the apparent activity of Ir-192 source was delivered from the 54.6 % of actual physical source activity through the self-absorption and encapsulation wall attenuations. This paper provides the 2-dimensional dose tabulation from unit apparent activity in a water medium for dose planning includes the multiple scattering, source anisotropy effect and geometric factors.

  • PDF

Comparison of Calibration Methods of $^{192}\textrm{Ir}$ Sources for High Dose Rate Brachytherapy (고선량률 근접조사치료용 이리듐-192 방사성동위원소의 교정방법 비교연구)

  • Huh Hyun Do;Park Sung Yong;Lee Rena J;Shin Dong Oh;Kwon Soo Il;Loh John J K;Choi Jinho
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.192-196
    • /
    • 2004
  • The activity of Ir-192 sources for high dose rate (HDR) Brachytherapy in Korea were measured by using the well-type chamber and using the calibration Jig with the Farmer-type ionization chamber to compare the manufacturer certificated source strength which is supplied with each new Ir-192 source. The activity of two different source models used in six hospitals were measured. The range of measured activities to the manufacturer's suggested ones was -2.40% to +3.31% for the calibration Jig and -3.12% to 0.00% for the well-type chamber system. The source strength values given by the manufacturer for the 6 sources were within ${\pm}5%$ for the two different measuring equipment. Our results demonstrate that well-type chamber as wall as Farmer-type chamber system are appropriate system for the routine source calibration procedures in HDR brachytherapy. Whenever a new source is installed to use in clinics, a source calibration should be carried out.

  • PDF

Quality Assurance on Dose Distribution of Ir-192 Line Source (Ir-192 선 선원의 선량분포에 관한 품질보증)

  • Kim, Jong-Eon
    • Journal of radiological science and technology
    • /
    • v.30 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • The propose of this study is a verification of the correct calculation of the dose around source and the prescription dose of Ir-192 source in the plato treatment planning system. The source and orthogonal coordinates for lateral direction and those for the anterior posterior direction were drawn on a A4 paper and then input into the system. The prescription dose was prescribed to two points with radius 1 cm in the direction of polar angle $90^{\circ} and $270^{\circ} from the center of the source. The doses of prescription point and dose points acquired from the treatment planning system were compared with those from manual calculation using the geometry function formalism derived by Paul King et al. In this analysis, the doses of prescription point were exactly consistent with each other and those of dose points were obtained within the error point of 1.85%. And the system of accuracy was evaluated within 2% of tolerance error. Therefore, this manual dose calculation used for the geometry function formalism is considered to be useful in clinics due to its convenience and high quality assurance.

  • PDF

Study on the Compatibility for an Ir-192 Source Manufactured by Korea Atomic Energy Research Institute (KAERI) in GammaMed Brachytherapy Machine (한국원자력연구소에서 개발한 Ir-192 선원의 감마메드 치료기 호환성 연구)

  • Jeong, Dong-Hyeok;Lee, Kang-Kyoo;Kim, Soo-Kon;Moon, Sun-Rock
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.78-85
    • /
    • 2010
  • The compatibility with GammaMed-12i brachytherapy machine for an Ir-192 encapsulated source (IRRS20, KAERI, Korea) manufactured by Korea atomic energy research institute (KAERI) has been investigated. As a mechanical testing of compatibility, precise measurement of step movement with channels, measurement of curvature of radius for wire, and emergency return testing were performed. Periodic measurements of air kerma strength for 45 days were carried out to evaluate decay characteristics of Ir-192 radioisotope and comparison of dose distributions in phantom between KAERI and old sources previously used were performed by film dosimetry. KAERI source has a good compatibility with GammaMed12i machine as a result of mechanical testing. There are in good agreement with calculated values in activity characteristics and there were small differences in dose distributions around the source in comparison between KAERI and old source.

High Dose Rate Ir-192 Source Calibration Method with Newly Designed Calibration Jig (고선량 Ir-192선원 교정기의 제작 및 특성)

  • Yi, Byong-Yong;Choi, Eun-Kyung;Chang, Hye-Sook
    • Radiation Oncology Journal
    • /
    • v.7 no.2
    • /
    • pp.299-303
    • /
    • 1989
  • Authors have developed highly reproducible calibration method for the Micro-Selectron HDR Ir-192 system (Nucletron, Motherland). The new jig has a 10cm radius circular hole in the $30cm{\times}30cm{\times}0.2cm$ acrylic plate, and 5F flexible bronchial tubes are attached around the hole. The source moves along the circle in the tubes and the ionization chamber is placed verticaly at the center of the circular hole (center of the jig). Dose distribution near the center was derived theoretically, and measured with the film dosimetry system. Theoretical calculation and measurement show the error margin below $0.1\%$ for 1mm or 2mm position deviation. We have measured at 12 and 24 points of circle with 1, 6, 11 and 21 second dwell time of source in order to calculate the activity of the source. Measurements have been repeated daily for 50 days. The accuracy and the reproducibility are below $1\%$ error margin. The half life of the source from our measurement is estimated $73.4\pm0.4$ days.

  • PDF

Dose Computation Modeling for Frustum Typed Ir-192 of Ralstron Source (Ralstron 선원대체형 Ir-192 원추선원의 선량 전산화 모델링)

  • 최태진
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.19-29
    • /
    • 2001
  • In dose modeling, the shape of actual source and sealed capsule are important parameter to determine the physical dose computation. The author investigated the effect of filter of source self-absorption and sealed capsule to designed the high dose rate Ir-192 source for Ralstron(Japan) unit. The size of source designed to 1.5 mm $\Phi$ x 1.5mm length of actual source sealed with stainless steel which is 3.0mm $\Phi$ x 12.0mm length connected to driving cable. The dose attenuation was derived 66.3 % from 2655 segmented source at reference point of 10mm lateral distance of source. The output dose rate factor in tissue for designed source showed 0.0013511 cGy/mCi-sec in reference point at 1cm lateral distance of source center. The dose distribution at inferior of source showed the 52% of that of source tip region, however, the filtering effect was small as 4% at 45degrees of source axis. The dose attenuation within 20 degrees of source axis at near source-cable connector showed large filtering effect as 40% over, but the small effect was revealed isotropic dose distribution at large angle.

  • PDF

Development of Phantom for Evaluate the Suitability of Ir-192 HDR Source with Brachytherapy Tools (근접치료용 하나로 생산 Ir-192 선원의 임상기기 적합성평가용 팬톰개발)

  • Shin, Kyo Chul;Choi, Sang Gyu;Kim, Ki Hwan;Son, Kwang Jae;Jeong, Dong Hyeok;Kim, Jeung Kee
    • Progress in Medical Physics
    • /
    • v.24 no.3
    • /
    • pp.171-175
    • /
    • 2013
  • Applicator of various kind of number ten kinds is used to raise from efficiency of brachytherapy to maximum. The compatibility of radiation source and applicator is very important subject for safety brachytherapy. Developed high dose rate brachytherapy source through Hanaro nuclear reactor in Korea Atomic Energy Research Institute and improve compatibility with using equipment in present. In this research, we wished to evaluate stability mechanical safety of radiation source and we developed phantom for evaluate several quality about Ir-192 sealed source that improve newly in Korea Atomic Energy Research Institute and is improved. The result for suitability of Ir-192 HDR source with brachytherapy tools that did normal operation in 2.2~2.7 cm extent about change of equal curvature and consider change of sudden curvature that did normal operation in radius 1.5~1.8 cm extent.