• Title/Summary/Keyword: Ipomoea

Search Result 192, Processing Time 0.027 seconds

FUNCTIONAL FOODS IN THE TRADITIONAL MAORI DIET

  • Cambie, Richard C.;Ferguson, Lynnette R.
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.54-55
    • /
    • 2001
  • The Maori people were early New Zealand settlers of Polynesian descent. The incidence of non-infectious diseases appears to have been low in these people, perhaps in part due to the presence of protective chemical constituents within their food plant supply. Three of the tropical crops they introduced are still eaten here today: the sweet potato of kumara (Ipomoea batatas), the taro (Colocasia esculenta) and the cabbage tree or ti (Cordyline terminalis).(omitted)

  • PDF

FUNCTIONAL FOODS IN THE TRADITIONAL MAORI DIET

  • Cambie, Richard C.;Ferguson, Lynnette R.
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10b
    • /
    • pp.11-12
    • /
    • 2001
  • The Maori people were early New Zealand settlers of Polynesian descent. The incidence of non-infectious diseases appears to have been low in these people, perhaps in part due to the presence of protective chemical constituents within their food plant supply. Three of the tropical crops they introduced are still eaten here today:the sweet potato of kumara (Ipomoea batatas), the taro (Colocasia esculenta) and the cabbage tree or ti (Cordyline terminalis).(omitted)

  • PDF

Pretective Effect of Purple Sweet Potato (Ipomoea batatas) on Hepatotoxicity Rats Induced by Carbon Tetrachlolide (자색고구마가 사염화탄소 투여에 의한 흰쥐의 간손상 보호에 미치는 영향)

  • Kim, Hyeon-A;Bang, Mi-Ae;Oh, Yong-Bee;Jeong, Byeong-Choon;Moon, Youn-Ho;Jeong, Woo-Jin;Cho, Young-Ja
    • Journal of the Korean Society of Food Culture
    • /
    • v.18 no.3
    • /
    • pp.202-210
    • /
    • 2003
  • The purpose of this study was to investigate the effects of dietary purple sweet potato(Ipomoea batatas) powder on serum lipid levels and antioxidative enzymes in normal and pretective effect on hepatotoxicity rats induced by carbon tetrachlolide. Four groups of rats (3-week-old inbred Sprague-Dawley male rats) were normal rats fed control diet(C), induced hepatotoxicity rats fed control diet(EC), normal rats fed purple sweet potato diet(P), and induced hepatotoxicity rats fed purple potato sweet diet(EP). Rats were induced by single injection of 50% carbon tetrachlolide(0.1 mL/100 g B.W., i.p.). The rats were fed ad libitum each of the experimental diet for 5 weeks. After 5 weeks the rats were sacrificed and activities of antioxidant enzymes and lipid peroxidation products were determined in their liver homogenates. But serum concentrations of lipid was not significant in all groups. Serum alanine aminotransferase(ALT/GPT) and aspartate aminotransferase(AST/GOT) of the EC and EP groups were heigher than the C and P groups. The hepatic glucose 6-phosphatase(G6Pase) activity of the group fed purple potato diet(P) was lower than the other groups(p<0.05). However, The glutathione peroxidase(GPx) activities was not statistically different between the groups. Renal glutathione S-transferase(GST) activity of the EC and EP groups were lower than the C and P groups(p<0.05). In conclusion, these results suggest that purple sweet potato is believed to be possible protective effect on hepatotoxicity rats induced by carbon tetrachlolide.

A Novel Oxidative Stress-inducible Peroxidase Promoter and Its Applications to Production of Pharmaceutical Proteins in Transgenic Cell Cultures

  • Lee, Ok-Sun;Park, Sun-Mi;Kwon, Suk-Yoon;Lee, Haeng-Soon;Kim, Kee-Yeun;Kim, Jae-Whune;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.143-150
    • /
    • 2002
  • A strong oxidative stress-inducible peroxidase promoter (referred to as SWPA2 promoter) was cloned from tell cultures of sweetpotato (Ipomoea batatas) and characterized in transgenic tobacco cultured cells in terms of biotechnological applications. Employing a transient expression assay in tobacco protoplasts, with five different 5'-deletion mutants of the SWPA2 promoter fused to the $\beta$-glucuronidase (GUS) reporter gene, the 1314 bp deletion mutant showed approximately 30 times higher GUS expression than the CaMV 35S promoter. The expression of GUS activity in suspension cultures of transgenic cells derived from transgenic tobacco leaves containing the -1314 bp SWPA2 promoter-GUS fusion was strongly expressed following 15 days of subculture compared to other deletion mutants, suggesting that the 1314 bp SWPA2 promoter will be biotechnologically useful for the development of transgenic cell lines engineered to produce key pharmaceutical proteins. In this respect, we developed transgenic cell lines such as tobacco (Nicotiana tabacum L. BY-2), ginseng (Panax ginseng) and Siberian ginseng (Acanthopanax senticosus) using a SWPA2 promoter to produce a human lactoferrin (hLf) and characterized the hLf production in cultured cells. The hLf production monitored by ELISA analysis in transgenic BY-2 cells was directly increased proportional to cell growth and reached a maximal level (up to 4.3% of total soluble protein) at the stationary phase in suspension cultures. The SWPA2 promoter should result in higher productivity and increased applications of plant cultured cells for the production of high-value recombinant proteins.

Agrobacterium- mediated Genetic Transformation and Plant Regeneration of Sweetpotato (Ipomoea batatas) (Agrobacterium 매개에 의한 고구마 형질전환 및 식물체 재분화)

  • Lim, Soon;Yang, Kyoung-Sil;Kwon, Suk-Yoon;Paek, Kee-Yoeup;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Journal of Plant Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.267-271
    • /
    • 2004
  • Transformed sweetpotato (Ipomoea batatas (L.) Lam. cv. Yulmi) plants were developed from embryogenic calli following Agrobacterium tumefaciens-mediated transformation. A. tumefaciens strain EHA105/pCAMBIA2301 harboring genes for intron $\beta$-glucuronidase (GUS) and kanamycin resistance. Transient expression of GUS gene was found to be higher when embryogenic calli were co-cultivated with Agrobacterium for 2 days. The co-cultured embryogenic calli transferred to selective MS medium containing 1mg/L 2,4-D, 100mg/L kanamycin, and 400mg/L claforan. These embryogenic calli were subcultured to the same selection medium at 4 weeks interval. Kanamycin-resistant calli transferred to hormone-free MS medium with kanamycin gave rise to somatic embryos and then converted into plantlets in the same medium. Southern blot analysis confirmed that the GUS gene was inserted into the genome of the sweetpotato plants. A histochemical assay revealed that the GUS gene was preferentially expressed in the leaf, petiole, and vascular tissue and tip of root.

Screening of Selected Korean Sweetpotato (Ipomoea batatas) Varieties for Fusarium Storage Root Rot (Fusarium solani) Resistance

  • Lee, Seung-yong;Paul, Narayan Chandra;Park, Won;Yu, Gyeong-Dan;Park, Jin-Cheon;Chung, Mi-Nam;Nam, Sang-Sik;Han, Seon-Kyeong;Lee, Hyeong-Un;Goh, San;Lee, Im Been;Yang, Jung-Wook
    • The Korean Journal of Mycology
    • /
    • v.47 no.4
    • /
    • pp.407-416
    • /
    • 2019
  • A common post-harvest disease of sweetpotato tuber is root rot caused by Fusarium solani in Korea as well as the other countries. Storage root rot disease was monitored earlier on sweetpotato (Ipomoea batatas) in storehouses of different locations in Korea. In the present study, an isolate SPL16124 was choosen and collected from Sweetpotato Research Lab., Bioenergy Crop Research Institute, NICS, Muan, Korea, and confirmed the identification as Fusarium solani by conidial and molecular phylogenetic analysis (internal transcribed spacer ITS and translation elongation factor EF 1-α gene sequences). The isolate was cultured on potato dextrose agar, and conidiation was induced. The fungus was screened for Fusarium root rot on tuber of 14 different varieties. Among the tested variety, Yenjami, Singeonmi, Daeyumi, and Sinjami showed resistant to root rot disease. Additionally, the pathogen was tested for pathogenicity on stalks of these varieties. No symptom was observed on the stalk, and it was confirmed that the disease is tissue specific.

Molecular cloning of peroxidase cDNAs from dehydration-treated fibrous roots of sweetpotato and their differential expression in response to stress

  • Kim, Yun-Hee;Yang, Kyoung-Sil;Kim, Cha-Young;Ryu, Sun-Hwa;Song, Wan-Keun;Kwon, Suk-Yoon;Lee, Haeng-Soon;Bang, Jae-Wook;Kwak, Sang-Soo
    • BMB Reports
    • /
    • v.41 no.3
    • /
    • pp.259-265
    • /
    • 2008
  • Three peroxidase (POD) cDNAs were isolated from dehydration-treated fibrous roots of sweetpotato (Ipomoea batatas) plant via the screening of a cDNA library, and their expressions were assessed to characterize functions of each POD in relation to environmental stress. Three PODs were divided into two groups, designated the basic PODs (swpb4, swpb5) and the anionic PODs (swpa7), on the basis of the pI values of mature proteins. Fluorescence microscope analysis indicated that three PODs are secreted into the extracellular space. RT-PCR analysis revealed that POD genes have diverse expression patterns in a variety of plant tissues. Swpb4 was abundantly expressed in stem tissues, whereas the expression levels of swpb5 and swpa7 transcripts were high in fibrous and thick pigmented roots. Swpb4 and swpa7 showed abundant expression levels in suspension cultured cells. Three POD genes responded differently in the leaf and fibrous roots in response to a variety of stresses including dehydration, temperature stress, stress-associated chemicals, and pathogenic bacteria.