• Title/Summary/Keyword: Ionizing radiation

Search Result 496, Processing Time 0.036 seconds

Analysis of the global gene expression profiles in genomic instability-induced cervical cancer cells

  • Oh, Jung-Min
    • International Journal of Oral Biology
    • /
    • v.47 no.2
    • /
    • pp.17-24
    • /
    • 2022
  • Preserving intact genetic material and delivering it to the next generation are the most significant tasks of living organisms. The integrity of DNA sequences is under constant threat from endogenous and exogenous factors. The accumulation of damaged or incompletely-repaired DNA can cause serious problems in cells, including cell death or cancer development. Various DNA damage detection systems and repair mechanisms have evolved at the cellular level. Although the mechanisms of these responses have been extensively studied, the global RNA expression profiles associated with genomic instability are not well-known. To detect global gene expression changes under different DNA damage and hypoxic conditions, we performed RNA-seq after treating human cervical cancer cells with ionizing radiation (IR), hydroxyurea, mitomycin C (MMC), or 1% O2 (hypoxia). Results showed that the expression of 184-1037 genes was altered by each stimulus. We found that the expression of 51 genes changed under IR, MMC, and hypoxia. These findings revealed damage-specific genes that varied differently according to each stimulus and common genes that are universally altered in genetic instability.

A formalism for the absorbed dose evaluation of the glass dosimeter

  • Ka-Young Park;Hyun-Chul Kim;Byoung-Chul Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2283-2287
    • /
    • 2023
  • We propose in the present work how the reference glass dosimeters can be introduced, which reflects the user irradiation condition. The reference glass dosimeters are used for correcting the reader fluctuation by reading it with sample glass dosimeters at the same time. Since they can be used without annealing after irradiation for long periods, one should consider both the fading effect and the natural background dose accumulation quantitatively. We construct an empirical but practical formalism of evaluating the absorbed dose on the glass dosimeter with the fading effect and the natural background dose accumulation considered.

Relationship between Radiation Induced Activation of DNA Repair Genes and Radiation Induced Apoptosis in Human Cell Line A431 (인체세포주 A431에서 방사선 조사 후 DNA수선 유전자 발현과 세포고사와의 관계에 관한 연구)

  • Bom, Hee-Seung;Min, Jung-Jun;Choi, Keun-Hee;Kim, Kyung-Keun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.2
    • /
    • pp.144-153
    • /
    • 2000
  • Purpose: The purpose of this study was to evaluate the relationship between radiation-induced activation of DNA repair genes and radiation induced apoptosis in A431 cell line. Materials and Methods: Five and 25 Gys of gamma radiation were given to A431 cells by a Cs-137 cell irradiator. Apoptosis was evaluated by flow cytometry using annexin V-fluorescein isothiocyanate and propidium iodide staining. The expression of DNA repair genes was evaluated by both Northern and Western blot analyses. Results: The number of apoptotic cells increased with the increased radiation dose. It increased most significantly at 12 hours after irradiation. Expression of p53, p21, and hRAD50 reached the highest level at 12 hours after 5 Gy irradiation. In response to 25 Gy irradiation, hRAD50 and p21 were expressed maximally at 12 hours, but p53 and GADD45 genes showed the highest expression level after 12 hours. Conclusion: Induction of apoptosis and DNA repair by ionizing radiation were closely correlated. The peak time of inducing apoptosis and DNA repair was 12 hours in this study model. hRAD50, a recently discovered DNA repair gene, was also associated with radiation-induced apoptosis.

  • PDF

Identification of Differentially Expressed Radiation-induced Genes in Cervix Carcinoma Cells Using Suppression Subtractive Hybridization (자궁경부암세포에서 방사선조사시 차등 발현되는 유전자 동정)

  • Kim Jun-Sang;Lee Young-Sook;Lee Jeung Hoon;Lee Woong-Hee;Seo Eun Young;Cho Moon-June
    • Radiation Oncology Journal
    • /
    • v.23 no.1
    • /
    • pp.43-50
    • /
    • 2005
  • Purpose : A number of genes and their products are Induced early or late following exposure of cells to ionizing radiation. These radiation-Induced genes have various effects on irradiated cells and tissues. Suppression subtractive hybridization (SSH) based on PCR was used to Identify the differentially expressed genes by radiation in cervix carcinoma cells. Materials and Methods : Total RNA and poly $(A)^+$ mRNA were Isolated from Irradiated and non-irradiated HeLa cells. Forward- and reverse-subtracted cDNA libraries were constructed using SSH. Eighty-eight clones of each were used to randomly select differentially expressed genes using reverse Northern blotting (dot blot analysis). Northern blotting was used to verify the screened genes. Results : Of the 17t clones, 10 genes in the forward-subtracted library and 9 genes In the reverse-subtracted library were identified as differentially expressed radiation-induced genes by PCR-select differential screening. Three clones from the forward-subtracted library were confirmed by Northern blotting, and showed increased expression in a dose-dependent manner, including a telomerase catalytic subunit and sodium channel-like protein gene, and an ESTs (expressed sequence tags) gene. Conclusion : We Identified differentially expressed radiation-induced genes with low-abundance genes with SSH, but further characterization of theses genes are necessary to clarify the biological functions of them.

Expression of Jun and p53 Genes from the Brain of Rats Irradiated with $^{60}Co{\gamma}$-ray (감마선 조사에 의한 뇌조직의 Jun 및 p53유전자 발현)

  • Kim Yong Seok;Woo Chong Kyu;Lee Yong Sung;Koh Jai Kyung;Chun Ha Chung;Lee Myung Za
    • Radiation Oncology Journal
    • /
    • v.14 no.4
    • /
    • pp.265-279
    • /
    • 1996
  • Damage produced by radiation elicits a complex response in mammalian cells, including growth rate changes and the induction of a variety of genes associated with growth control and apoptosis. At doses of 10,000 cGy or greater, the exposed individual was killed in a matter of minutes to a couple of days, with symptoms consistent with pathology of the central nervous system(CNS) including degenerative changes. The nature of the damage in irradiated cells underlies the unique hazards of ionizing radiation. Radiation injury to CNS is a rare event in clinical medicine, but it is catastrophic for the patient in whom it occurs. The incidence of cerebral necrosis has been reported as high as 16% for doses greater than 6,000 cGy. In this study, the effect of radiation on brain tissue was studied in vivo. Jun and p53 genes in the rat brain were induced by whole body irradiation of rat with 600Co in doses between 1 Gy and 100 Gy and analyzed for expression of jun and p53 genes at the postirradiation time up to 6 hours. Northern analyses were done using 1.8 Kb & 0.8 Kb-pGEM-2-JUN/Eco RI/Pst I fragments, 2.0 Kb-php53B/Bam HI fragment and ,1.1 Kb-pBluescript SK--ACTIN/Eco RI fragment as the digoxigenin or [${\alpha}^{32}P$] dCTPlabeled probes for Jun, p53 and ${\beta}$-actin genes, respectively. Jun gene seemed to be expressed near the threshold levels in 1 hour after irradiation of $^{60}$Co in dose less than 1 Gy and was expressed in maximum at 1 hour after irradiation of $^{60}$Co in dose of 30 Gy. Jun was expressed increasingly with time until 5 or 6 hours after irradiation of $^{60}$Co in doses of 1 Gy and 10 Gy. After irradiation of $^{60}$Co in dose between 20 Gr and 100 Gy, the expression of Jun was however increased to peak in 2 hours and decreased thereafter. p53 gene in this study also seemed to be expressed near the threshold levels in 1 hour after irradiation of $^{60}$Co in dose less than 1 Gy and was expressed in maximum at 6 hours after irradiation of $^{60}$Co in dose of 1 Gy, p53 was expressed increasingly with time until 5 or 6 hours after irradiation of $^{60}$Co in dose between 1 Gy and 40 Gy. After irradiation of $^{60}$Co in doses of 50 Gy and 100 Gy, the expression of p53 was however increased to peak in 2 hours and decreased thereafter. The expression of Jun and p53 genes was not correlative in the brain tissue from rats. It seemed to be very important for the establishment of the optimum conditions for the animal studies relevant to the responses of genes inducible on DNA damage to ionizing radiation in mammalian cells. But there are many limitations to the animal studies such as the ununiform patterns of gene expression from the tissue because of its complex compositions. It is necessary to overcome the limitations for development of in situ Northern analysis.

  • PDF

Expression of TIMP1, TIMP2 Genes by Ionizing Radiation (이온화 방사선에 의한 TIMP1, TIMP2 유전자 발현 측정)

  • Park Kun-Koo;Jin Jung Sun;Park Ki Yong;Lee Yun Hee;Kim Sang Yoon;Noh Young Ju;Ahn Seung Do;Kim Jong Hoon;Choi Eun Kyung;Chang Hyesook
    • Radiation Oncology Journal
    • /
    • v.19 no.2
    • /
    • pp.171-180
    • /
    • 2001
  • Purpose : Expression of TIMP, intrinsic inhibitor of MMP, is regulated by signal transduction in response to genotoxins and is likely to be an important step in metastasis, angiogenesis and wound healing after ionizing radiation. Therefore, we studied radiation mediated TIMP expression and its mechanism in head and neck cancer cell lines. Materials and Methods : Human head and neck cancer cell lines established at Asan Medical Center were used and radiosensitivity $(D_0)$, radiation cytotoxicity and metastatic potential were measured by clonogenic assay, n assay and invasion assay, respectively. The conditioned medium was prepared at 24 hours and 48 hours after 2 Gy and 10 Gy irradiation and expression of TIMP protein was measured by Elisa assay with specific antibodies against human TIMP. hTIMP1 promoter region was cloned and TIMP1 luciferase reporter vector was constructed. The reporter vector was transfected to AMC-HN-1 and -HN-9 cells with or without expression vector Ras, then the cells were exposed to radiation or PMA, PKC activator. EMSA was peformed with oligonucleotide (-59/-53 element and SP1) of TIMP1 promoter. Results : $D_0$ of HN-1, -2, -3, -5 and -9 cell lines were 1.55 Gy, 1.8 Gy, 1.5 Gt, 1.55 Gy and 2.45 Gy respectively. n assay confirmed cell viability, over $94\%$ at 24hrs, 48hrs after 2 Gy irradiation and over 73% after 10 Gy irradiation. Elisa assay confirmed that cells secreted TIMP1, 2 proteins continuously. After 2 Gy irradiation, TIMP2 secretion was decreased at 24hrs in HN-1 and HN-9 cell lines but after 10 Gy irradiation, it was increased in all cell lines. At 48hrs after irradiation, it was increased in HN-1 but decreased in HN-9 cells. But the change in TIMP secretion by RT was mild. The transcription of TIMP1 gene in HN-1 was induced by PMA but in HN-9 cell lines, it was suppressed. Wild type Ras induced the TIMP-1 transcription by 20 fold and 4 fold in HN-1 and HN-9 respectively. The binding activity to -59/-53, AP1 motif was increased by RT, but not to SP1 motif in both cell lines. Conclusions : We observed the difference of expression and activity of TIMPs between radiosensitive and radioresistant cell line and the different signal transduction pathway between in these cell lines may contribute the different radiosensitivity. Further research to investigate the radiation response and its signal pathway of TIMPs is needed.

  • PDF

Negative impact of pretreatment anemia on local control after neoadjuvant chemoradiotherapy and surgery for rectal cancer

  • Lee, Hyebin;Park, Hee Chul;Park, Won;Choi, Doo Ho;Kim, Young-Il;Park, Young Suk;Park, Joon Oh;Chun, Ho-Kyung;Lee, Woo-Yong;Kim, Hee Cheol;Yun, Seong Hyeon;Cho, Yong Beom;Park, Yoon Ah
    • Radiation Oncology Journal
    • /
    • v.30 no.3
    • /
    • pp.117-123
    • /
    • 2012
  • Purpose: Although anemia is considered to be a contributor to intra-tumoral hypoxia and tumor resistance to ionizing radiation in cancer patients, the impact of pretreatment anemia on local control after neoadjuvant concurrent chemoradiotherapy (NACRT) and surgery for rectal cancer remains unclear. Materials and Methods: We reviewed the records of 247 patients with locally advanced rectal cancer who were treated with NACRT followed by curative-intent surgery. Results: The patients with anemia before NACRT (36.0%, 89/247) achieved less pathologic complete response (pCR) than those without anemia (p = 0.012). The patients with pretreatment anemia had worse 3-year local control than those without pretreatment anemia (86.0% vs. 95.7%, p = 0.005). Multivariate analysis showed that pretreatment anemia (p = 0.035), pathologic tumor and nodal stage (p = 0.020 and 0.032, respectively) were independently significant factors for local control. Conclusion: Pretreatment anemia had negative impacts on pCR and local control among patients who underwent NACRT and surgery for rectal cancer. Strategies maintaining hemoglobin level within normal range could potentially be used to improve local control in rectal cancer patients.

Combined Effects of Ionizing Radiation and Ultrasound on Malformation in ICR Mice at Organogenesis stage

  • Gu, Yeun-Hwa;Hasegawa, Takeo;Mori, Takehiko;Yamamoto, Youichi;Kusama, Tomoko
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.1
    • /
    • pp.23-30
    • /
    • 1999
  • Pregnant ICR mice were treated with 137Cs gamma-ray / ultrasound on day 8 of gestation. In combined treatments, pregnant mice were treated with both 1.5 Gy of radiation and $1.0W/cm^2$ ultrasound at time intervals of -1, 0, 1, 3 and 6 hours. The mortalities and external malformations were investigated on day 18 of gestation. The threshold dose of mortality induced by radiation on day 8 of gestation was between 0.5 and 1.0 Gy, and that which was induced by ultrasound was between 1.0 and $1.5W/cm^2$. The mortalities in the late-stage of gestation induced by combined treatment with radiation and ultrasound increased synergistically. The threshold dose of exencephaly and anophthalmia induced by radiation were between 0.5 and 1.0 Gy and between 1.0 and 1.5 Gy, respectively. Those of exencephaly and anophthalmia induced by ultrasound were between 1.0 and $1.5W/cm^2$ and more than $1.5W/cm^2$, respectively. In combined treatments, the incidence of exencephaly and anophthalmia were found to increase synergistically. In the mice treated with both agents at a time interval of one hour, the incidence of exencephaly and anophthalmia reached maximum levels.

  • PDF

Studies on the Manufacturing of Sujeonggwa (Korean Traditional Cinnamon Flavored Persimmon Punch) Edible in Severe Environment by Gamma Irradiation (감마선 조사기술 이용 극한환경에서도 취식 가능한 수정과 제조에 관한 연구)

  • Park, Jae-Nam;Lee, Ju-Woon;Kim, Jae-Hun;Kim, Kwan-Soo;Han, Kyu-Jai;Sul, Min-Sook;Lee, Hyun-Ja;Byun, Myung-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.5
    • /
    • pp.609-615
    • /
    • 2007
  • This study was conducted to develop the method for the safe supply of Sujeonggwa (cinnamon flavored persimmon punch) in severe environments such as space, desert or deep sea, by the combined treatment of gamma irradiation with other food technologies. Commercially prepared Sujeonggwa powder could be sterilized at 4.5 kGy or above doses. However, sensory characteristics of gamma-irradiated Sujeonggwa decreased depending upon the dose. The combined treatment of vacuum packaging with the addition of vitamin C and cinnamic aldehyde in Sujeonggwa powder could minimize the change of sensory qualities induced by ionizing irradiation.

Adaptive Response Induced by Low Dose Ionizing Raditation in Human Cervical Carcinoma Cells

  • Kim, Jeong -Hee;Lee, Kyung -Jong;Cho, Chul -Koo;Yoo, Seong -Yul;Kim, Tae -Hwan;Ji, Young -Hoon;Kim, Sung -Ho
    • Archives of Pharmacal Research
    • /
    • v.18 no.6
    • /
    • pp.410-414
    • /
    • 1995
  • Adaptive response induced by low dese .gamma.-ray irradiation in human cervical carcinoma cells was examined. Cells were exposured to low dose of .gamma.-ray irradiation in human cervical carcinoma cells was examined. Cells were exposured to low dose of .gamma.-ray (1-cGy) followed by high doses of r-ray irradiation (0,1,2,3,5,7 and 9Gy for chlnogenic assay or 1.5Gy for micronucleus assay) with various time intervals. Survival fractions of cells in both low dose-irradiated and unirrated groups were analyzed by clonogenic assay. Surviva fractions of low dose-irradiated in cell survival was maximum when low and high dose irradiation time interval was 4 hr. Frequencies of micronuclei which is an indicative of chromosome aberration were also enutained from survival fractions analyzed by clonogenic assay, maximum when low and high dose irradiation time interval was 4hr. Frequencies of micronuclei which is an indicative of chromosome aberration were also enumerated in both low dose-irradiated and unirradiated groups. In consiststent with the result obtained from survival fractions analyzed by clonogenic assay, maximum reduction in frquencies of micronuclei was observed when low dose radiation was given 4 hr prior to high response to subsequent high dose .gamma.-ray irradiation in human cervical carcinomal cells. Our data suggest that one of the possible mechanisms of adaptive response induced by low dose rediation is the increase in repair of DNA double strand breaks in low dose radiation-adapted cells.

  • PDF