• Title/Summary/Keyword: Ionization efficiency

Search Result 105, Processing Time 0.028 seconds

A Fast and Sensitive Method for the Simultaneous Determination and Quantification of Six Anionic Surfactants in Surface Water using HILIC-ESI-MS Technique

  • Dash, Upendra N.;Paul, Saroj Kumar
    • Mass Spectrometry Letters
    • /
    • v.3 no.3
    • /
    • pp.78-81
    • /
    • 2012
  • The hydrophobic hydrocarbon chain and the polar sulfate group confer surfactant properties and enable them to be used as anionic surfactants. Anionic surfactants (AS) are known for their adverse impact on environment, particularly on aquatic ecosystem. In the present study a fast, sensitive and selective method for the determination and subsequent quantification of six anionic surfactants was developed using hydrophilic interactive liquid chromatography (HILIC) coupled to a electrospray ionization (ESI) mass spectrometer (MS), in the concentration range 15-20 ${\mu}g/L$. The capability of the method was established using regression analysis and ANOVA. The method performance was evaluated by analyzing real time surface water spiked with 1-dodecyl hydrogen sulfate at 15 ${\mu}g/L$. Combined efficiency of solid phase extraction and MS detection established recovery of 89% in presence of natural matrix. These results point out that HILIC coupled to multistage MS procedures can be a powerful technique for environmental applications concerning the screening of polar contaminants.

Study on Efficiency Improvement of OLEDs using Zn(phen)q as Electron Transporting Layer (Zn(phen)q를 전자 수송층으로 이용한 OLEDs의 효율 향상에 관한 연구)

  • Kim, Dong-Eun;Kwon, Oh-Kwan;Lee, Burm-Jong;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.313-314
    • /
    • 2005
  • Organic light emitting diodes(OLEDs) are widely used as one of the information display techniques. We synthesized (1,10-phenanthroline)- (8-hydroxyquinoline) [Zn(Phen)q]. We studied the improvement of OLEDs properties using Zn(phen)q. The Ionization Potential(IP) and the Electron Affinity(EA) of Zn(phen)q investigated using cyclic voltammetry(CV). The IP, EA and Eg were 7.leV, 3.4eV and 3.7eV, respectively. The PL spectrum of Zn(phen)q was yellowish green as the wavelength of 535nm. In this study, we used Zn(phen)q as electron transporting layer(ETL) inserted between emitting layer(EML) and cathode. As a result, Zn(phen)q is useful as electron transporting layer to enhance the performance of OLEDs.

  • PDF

Properties of Cr-N Films Prepared by the Arc-induced Ion Plating (아아크방전 유도형 이온플레이팅에 의한 Cr-N 피막의 특성)

  • Jeong, Jae In;Mun, Jong Ho;Hong, Jae Hwa;Gang, Jeong Su;Lee, Yeong Baek
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.1
    • /
    • pp.24-24
    • /
    • 1991
  • Cr-N films were deposited on low-carbon steel sheets by the reactive arc-induced ion plating (AIIP). The influence of the deposition conditions (nitrogen pressure and substrate bias voltage) on the crystal orientation, morphology and microhardness of the Cr-N films has been investigated using x-ray diffractometer and scanning electron microscope. The impurities and contaminations on the surface and at the interface, and the layer-by-layer compositions of the film have been analyzed using scanning Auger multiprobe (SAM) and glow discharge spectroscope (GDS). The mixed state of Cr and Cr2N turned out to have a fine fibrous structure. The Cr2N films were deposited at a wide range of nitrogen flow rates. The orientations of Cr2N films were mainly (110) and (111), and the intensity of the (111) peak increased as the substrate bias voltage increased. The micorstructure of the Cr2N film was dense and no columnar structure was observed. The films in the mixed state of Cr2N and CrN were also dense without columnar structure. The maximum microhardness of the Cr-N films was 2400 kg/$\textrm{mm}^2$ at 10gf load.

Properties of Cr-N Films Prepared by the Arc-induced Ion Plating (아아크방전 유도형 이온플레이팅에 의한 Cr-N 피막의 특성)

  • 정재인;문종호;홍재화;강정수;이영백
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.1
    • /
    • pp.24-33
    • /
    • 1992
  • Cr-N films were deposited on low-carbon steel sheets by the reactive arc-induced ion plating (AIIP). The influence of the deposition conditions (nitrogen pressure and substrate bias voltage) on the crystal orientation, morphology and microhardness of the Cr-N films has been investigated using x-ray diffractometer and scanning electron microscope. The impurities and contaminations on the surface and at the interface, and the layer-by-layer compositions of the film have been analyzed using scanning Auger multiprobe (SAM) and glow discharge spectroscope (GDS). The mixed state of Cr and Cr₂N turned out to have a fine fibrous structure. The Cr₂N films were deposited at a wide range of nitrogen flow rates. The orientations of Cr₂N films were mainly (110) and (111), and the intensity of the (111) peak increased as the substrate bias voltage increased. The microstructure of the Cr₂N film was dense and no columnar structure was observed. The films in the mixed state of Cr₂N and CrN were also dense without columnar structure. The maximum microhardness of the Cr-N films was 2400 kg/㎟ at 10 gf load.

  • PDF

A Study on the efficiency improvement of OLED using Zn-Complex (Zn-complex를 이용한 OLED 효율향상에 관한 연구)

  • Jang, Yoon-Ki;Kim, Byoung-Sang;Lee, Burm-Jong;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.23-24
    • /
    • 2006
  • We have synthesized electroluminescence materials. including [2-(2-hydroxyphenyl)benzoxazole] (Zn(HPB)$_2$), [(2-(2-hydroxyphenyl)benzoxazole)(8-hydoxyquinoline)] (Zn(HPB)q) and [(1, 10-phenanthroline)(8-hydroxyquinoline)] Zn(phen)q. The ionization potential (IP) and electron affinity (EA) of each Zn-complex was measured using cyclic-voltammetry (C-V). Basing on the consideration of matched in the energy levels of the materials. We investigated the electron transporting properties of Zn(HPB)q and Zn(phen)q compared with $Alq_3$, and also we investigated the hole blocking properties of Zn(HPB)$_2$, compared with BCP. As a result, we used Zn-complex to enhance the performance of OLED. Therefore, we demonstrate that Zn(HPB)q and Zn(phen)q are useful as an electron transporting material. Zn(HPB)$_2$ is also good a hole blocking material.

  • PDF

Environment Effects on the Stability of the CQUEAN CCD

  • Choi, Nahyun;Pak, Soojong;Choi, Changsu;Park, Won-Kee;Im, Myungshin;Jeon, Yiseul;Baek, Giseon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.222.2-222.2
    • /
    • 2012
  • Camera for QUasars in EArly uNiverse (CQUEAN) is an optical CCD camera attached to the 2.1m Otto Struve telescope at the McDonald Observatory, USA. CCD output signal contains the electrons generated by photoionization of incident light and thermal ionization. Therefore reliable photometric result can be obtained only under the stable condition of CCD thermal properties. We investigated the temperature dependency of the various characteristics of CQUEAN CCD chip, including bias level, dark level, gain, and quantum efficiency (QE), with the CQUEAN observation and calibration data obtained during 2012 May run. We discuss the environmental effects, i.e., ambient temperature, as well as CCD temperature on the stability of its characteristics.

  • PDF

Luminance Properties of Organic Light Emitting Diodes Using Zn-Complexes (Zn-Complexes를 이용한 OLEDs의 발광 특성 연구)

  • Jang, Yoon-Ki;Kim, Doo-Seok;Kim, Byoung-Sang;Kwon, Oh-Kwan;Lee, Burm-Jong;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1890-1892
    • /
    • 2005
  • Recently, high luminance and high efficiency were realized in OLEDs with multilayer structure including emitting materials such as metal-chelate complexes. New luminescent materials, [2- (2-hydroxyphenyl)-quinoline] (Zn(HPB)q), [(1,10-phenanthroline)- (8-hydroxyquinoline)] Zn(Phen)q was synthesized. Zn-Complexes have low molecular compound and thermal stability. The ionization potential(IP) and electron affinity(EA) of Zn-complexes were measured by cyclic-voltammetry(CV). The fundamental structure of the OLEDs was $ITO/{\alpha}$-NPD/Zn-Complex/Al and then we made device structure rightly in energy band gap. We using Zn(Phen)q as emitting layer and Zn(HPB)q as electron transport layer. We measured current density-voltage, luminance-voltage characteristics.

  • PDF

A Study of Discharge Shape Changes by Magnet Arrangements in a Magnetron Cathode (마그네트론 음극의 자석 배열에 따른 방전의 형상 변화 연구)

  • Jee, Jung-Eun;Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.3
    • /
    • pp.94-101
    • /
    • 2008
  • A new convenient magnet array module is designed to investigate effects of magnetic field array on magnetron discharge characteristics. Magnetic field analysis showed good agreement of measured discharge region by a CCD device which has a high quantum efficiency over visible wavelength range. OES (optical emission spectroscopy) showed major emission peaks are from electronic transitions in 400 nm range and 800 nm range. Effects of driving voltage characteristics were analyzed in a point of electron drift trajectories and ionizing collision frequencies. Pulsed dc with a fast rising and falling time was analyzed to have potential to increase ionization collisions by putting a burst of hot electrons and to raise sheath potential. From measured voltage and current waveform, maximum of -1000 V peak was generated with $-400\;V_{rms}$ conditions. Possibility of a properly designed magnetron cathode was shown to be used as a melting device. Cu was successfully melted with power density of a several tens of $W/cm^2$.

A Noise Reduction Technique for Enhancing Pituitary Adenoma Diagnostic on Magnetic Resonance Image (개선된 뇌하수체 선종 진단을 위한 자기공명영상 노이즈 제거 기법)

  • Jung, Young-Jin
    • Journal of radiological science and technology
    • /
    • v.42 no.4
    • /
    • pp.285-290
    • /
    • 2019
  • Magnetic resonance imaging is a technique specialized in soft tissue imaging with high contrast resolution without in vivo ionization and has been widely used in various clinical settings. In particular, the recent increase in social stress factors has been used in the diagnosis of pituitary adenoma, the incidence increases rapidly. Recently, due to the development of magnetic resonance imaging, it is possible to diagnose micro pituitary adenoma, but despite the use of contrast medium, there has been a difficulty in diagnosing the pituitary adenoma due to its small size and noise. In order to solve this problem, a proposed method of separating signal components image and noise components image from a measured image is applied, and the improvement of diagnostic efficiency is attempted by removing noise. As a result, it was confirmed that the image quality was improved as a whole by applying SNR for 30 subjects data. It is expected that this study will be useful as a pre-processing method for improving the image quality and developing diagnostic indicators of pituitary adenoma.

A Study on the Optimal Design of Soft X-ray Ionizer using the Monte Carlo N-Particle Extended Code (Monte Carlo N-Particle Extended 코드를 이용한 연X선 정전기제거장치의 최적설계에 관한 연구)

  • Jeong, Phil hoon;Lee, Dong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.34-37
    • /
    • 2017
  • In recent emerging industry, Display field becomes bigger and bigger, and also semiconductor technology becomes high density integration. In Flat Panel Display, there is an issue that electrostatic phenomenon results in fine dust adsorption as electrostatic capacity increases due to bigger size. Destruction of high integrated circuit and pattern deterioration occur in semiconductor and this causes the problem of weakening of thermal resistance. In order to solve this sort of electrostatic failure in this process, Soft X-ray ionizer is mainly used. Soft X-ray Ionizer does not only generate electrical noise and minute particle but also is efficient to remove electrostatic as it has a wide range of ionization. X-ray Generating efficiency has an effect on soft X-ray Ionizer affects neutralizing performance. There exist variable factors such as type of anode, thickness, tube voltage etc., and it takes a lot of time and financial resource to find optimal performance by manufacturing with actual X-ray tube source. MCNPX (Monte Carlo N-Particle Extended) is used for simulation to solve this kind of problem, and optimum efficiency of X-ray generation is anticipated. In this study, X-ray generation efficiency was measured according to target material thickness using MCNPX under the conditions that tube voltage is 5 keV, 10 keV, 15 keV and the target Material is Tungsten(W), Gold(Au), Silver(Ag). At the result, Gold(Au) shows optimum efficiency. In Tube voltage 5 keV, optimal target thickness is $0.05{\mu}m$ and Largest energy of Light flux appears $2.22{\times}10^8$ x-ray flux. In Tube voltage 10 keV, optimal target Thickness is $0.18{\mu}m$ and Largest energy of Light flux appears $1.97{\times}10^9$ x-ray flux. In Tube voltage 15 keV, optimal target Thickness is $0.29{\mu}m$ and Largest energy of Light flux appears $4.59{\times}10^9$ x-ray flux.