• Title/Summary/Keyword: Ionic species

Search Result 280, Processing Time 0.032 seconds

Composition and emission characteristics of fine particulate matters at the 1100 Site of Mt. Halla during 2011-2012 (한라산 1100고지 대기 미세먼지의 조성 및 배출 특성: 2011~2012년 측정)

  • Song, Jung-Min;Bu, Jun-Oh;Kim, Won-Hyung;Ko, Hee-Jung;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.209-218
    • /
    • 2016
  • PM10 and PM2.5 samples were collected at the 1100 site of Mt. Halla in Jeju Island during 2011~2012, and their ionic and elemental species were analyzed, in order to investigate the characteristics of emission sources as well as aerosol compositions. The mass concentrations of PM10 and PM2.5 were 22.0±13.1 µg/m3 and 11.3±6.1 µg/m3, respectively, showing 2.4~2.6 times lower than those of the capital city area of Korea. The composition ratios of major secondary pollutants (nss-SO42−, NH4+, and NO3) were the highest as 85.5 % for PM10 and 91.3 % for PM2.5, and followed by the order of marine (Na+, Cl, and Mg2+), organic acid (HCOO and CH3COO), and soil (nss-Ca2+) sources. Among the elemental species in PM10, soil-originated components (Al, Fe, and Ca) were consisted of 50.9 %, which was higher proportion than marine and anthropogenic elements. The acidification of the fine particulate matters was found to be influenced mostly by sulfuric and nitric acids, and these acids were mainly neutralized by calcium carbonate in PM10 and by ammonia in PM2.5. The clustered back trajectories showed that 47 % of total air mass inflows was from the China, and the concentrations of NO3 and nss-Ca2+ were especially high corresponding to the inflows.

Uranium Adsorption Properties and Mechanisms of the WRK Bentonite at Different pH Condition as a Buffer Material in the Deep Geological Repository for the Spent Nuclear Fuel (사용후핵연료 심지층 처분장의 완충재 소재인 WRK 벤토나이트의 pH 차이에 따른 우라늄 흡착 특성과 기작)

  • Yuna Oh;Daehyun Shin;Danu Kim;Soyoung Jeon;Seon-ok Kim;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.603-618
    • /
    • 2023
  • This study focused on evaluating the suitability of the WRK (waste repository Korea) bentonite as a buffer material in the SNF (spent nuclear fuel) repository. The U (uranium) adsorption/desorption characteristics and the adsorption mechanisms of the WRK bentonite were presented through various analyses, adsorption/desorption experiments, and kinetic adsorption modeling at various pH conditions. Mineralogical and structural analyses supported that the major mineral of the WRK bentonite is the Ca-montmorillonite having the great possibility for the U adsorption. From results of the U adsorption/desorption experiments (intial U concentration: 1 mg/L) for the WRK bentonite, despite the low ratio of the WRK bentonite/U (2 g/L), high U adsorption efficiency (>74%) and low U desorption rate (<14%) were acquired at pH 5, 6, 10, and 11 in solution, supporting that the WRK bentonite can be used as the buffer material preventing the U migration in the SNF repository. Relatively low U adsorption efficiency (<45%) for the WRK bentonite was acquired at pH 3 and 7 because the U exists as various species in solution depending on pH and thus its U adsorption mechanisms are different due to the U speciation. Based on experimental results and previous studies, the main U adsorption mechanisms of the WRK bentonite were understood in viewpoint of the chemical adsorption. At the acid conditions (<pH 3), the U is apt to adsorb as forms of UO22+, mainly due to the ionic bond with Si-O or Al-O(OH) present on the WRK bentonite rather than the ion exchange with Ca2+ among layers of the WRK bentonite, showing the relatively low U adsorption efficiency. At the alkaline conditions (>pH 7), the U could be adsorbed in the form of anionic U-hydroxy complexes (UO2(OH)3-, UO2(OH)42-, (UO2)3(OH)7-, etc.), mainly by bonding with oxygen (O-) from Si-O or Al-O(OH) on the WRK bentonite or by co-precipitation in the form of hydroxide, showing the high U adsorption. At pH 7, the relatively low U adsorption efficiency (42%) was acquired in this study and it was due to the existence of the U-carbonates in solution, having relatively high solubility than other U species. The U adsorption efficiency of the WRK bentonite can be increased by maintaining a neutral or highly alkaline condition because of the formation of U-hydroxyl complexes rather than the uranyl ion (UO22+) in solution,and by restraining the formation of U-carbonate complexes in solution.

A Study on Chemical Composition of Fine Particles in the Sungdong Area, Seoul, Korea (서울 성동구 지역 미세먼지의 화학적 조성에 관한 연구)

  • 조용성;이홍석;김윤신;이종태;박진수
    • Journal of Environmental Science International
    • /
    • v.12 no.6
    • /
    • pp.665-676
    • /
    • 2003
  • To investigate the chemical characteristics of PM$\_$2.5/ in Seoul, Korea, atmospheric particulate matters were collected using a PM$\_$10/ dichotomous sampler including PM$\_$10/ and PM$\_$2.5/ inlet during the period of October 2000 to September 2001. The Inductively Coupled Plasma-Mass Spectromety (ICP-MS), ion Chromatography (IC) methods were used to determine the concentration of both metal and ionic species. A statistical analysis was performed for the heavy metals data set using a principal component analysis (PCA) to derived important factors inherent in the interactions among the variables. The mean concentrations of ambient PM$\_$2.5/ and PM/sub10/ were 24.47 and 45.27 $\mu\textrm{g}$/㎥, respectively. PM$\_$2.5/ masses also showed temporal variations both yearly and seasonally. The ratios of PM$\_$2.5/PM$\_$10/ was 0.54, which similar to the value of 0.60 in North America. Soil-related chemical components (such as Al, Ca, Fe, Si, and Mn) were abundant in PM$\_$10/, while anthropogenic components (such as As, Cd, Cr, V, Zn and Pb) were abundant in PM2s. Total water soluble ions constituted 30∼50 % of PM$\_$2.5/ mass, and sulfate, nitrate and ammonium were main components in water soluble ions. Reactive farms of NH$_4$$\^$+/were considered as NH$_4$NO$_3$ and (NH$_4$)$_2$SO$_4$ during the sampling periods. In the results of PCA for PM$\_$2.5/, we identified three principal components. Major contribution to PM$\_$2.5/ seemed to be soil, oil combustion, unidentified source. Further study, the detailed interpretation of these data will need efforts in order to identify emission sources.

Glycoprotein Isolated from Morus indica Linne Has an Antioxidative Activity and Inhibits Signal Factors Induced by Bisphenol A in Raw 264.7 Cells (뽕잎 당단백질의 항산화능과 Raw 264.7 세포에 있어서 bisphenol A에 유도된 신호전달인자의 억제)

  • Shim, Jae-Uoong;Lee, Sei-Jung;Oh, Phil-Sun;Lim, Kye-Taek
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.209-216
    • /
    • 2007
  • The present study investigated anti-oxidative and anti-inflammatory activity of glycoprotein isolated from Morus Indica Linne (MIL glycoprotein). We found that MIL glycoprotein has a molecular weight of 32 kD and consists of carbohydrate (40.03%) and protein (59.97%), and that it has a strong scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical $({\cdot}OH)$, and superoxide anion $(O_2{\cdot}\;^-)$ radicals. In addition, MIL glycoprotein had a stable character and an optimal DPPH radical scavenging activity in the alkaline and neutral pH solution, and up to at 105. However, the results indicated that it has a minimal scavenging activity in the metal ionic solution ($Ca^{2+}$, $Mn^{2+}$, and $Mg^{2+}$) in the presence of EDTA. In addition, we further investigated whether MIL glycoprotein scavenges oxygen radicals and blocks inflammation-related signals in the bisphenol A (BPA)-stimulated Raw 264.7 cells. The results in this study showed that it has a character to scavenge the productions of reactive oxygen species (ROS) and nitric oxide (NO) dose-dependently. Also it blocked the activities of inflammation-related signals such as nuclear factor-kappa B ($NF-{\kappa}B$) and inducible nitric oxide synthase (iNOS). For example, it had an inhibitory effect on the activation of $NF-{\kappa}B$ (p50) and iNOS proteins at 200 ${\mu}g/mL$ MIL glycoprotein. Here, we speculate that MIL glycoprotein is one of natural antioxidants and of modulators of the BPA-induced inflammation.

Snow Influence on the Chemical Characteristics of Winter Precipitation (강설이 겨울철 강수의 화학적 특성에 미치는 영향)

  • Kang, Gong-Unn;Kim, Nam-Song;Oh, Gyung-Jae;Shin, Dae-Yewn;Yu, Du-Cheol;Kim, Sang-Baek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.113-125
    • /
    • 2007
  • To know the differences in ionic compositions in rain and snow as well as snow influence on the chemical characteristics of winter precipitation, precipitation samples were collected by the wet-only automatic precipitation sample, in winter(November-February) in the Iksan located in the northwest of Chonbuk from 1995 to 2000. The samples were analyzed for concentrations of water-soluble ion species, in addition to pH and electrical conductivity. The mean pH of winter precipitation was 4.72. According to the type of winter precipitation, the mean pH of rain was 4.67 and lower than 5.05 in snow. The frequencies of pH below 5.0 in rain were about 73%, while those in snow were about 30%. Snow contained 3 times higher concentrations of sea salt ion components originated from seawater than did rain in winter, mainly $Cl^-,\;Na^+$, and $Mg^{2+}$. Neglecting sea salt ion components, $nss-SO_4^{2-}$ and $NO_3^-$ were important anions and $NH_4^+$ and $nss-Ca^{2+}$ were important cations in both of rain and snow. Concentrations of $nss-SO_4^{2-}$ was 1.3 times higher in rain than in snow, while those of $nss-Ca^{2+}$ and $NO_3^-$ were 1.5 and 1.3 times higher in snow, respectively. The mean equivalent concentration ratio of $nss-SO_4^{2-}/NO_3^-$ in winter precipitation were 2.4, which implied that the relative contribution of sulfuric and nitric acids to the precipitation acidity was 71% and 29%, respectively. The ratio in rain was 2.7 and higher than 1.5 in snow. These results suggest that the difference of $NO_3^-$ in rain and snow could be due to the more effective scavenging of $HNO_3$ vapor than particulate sulfate or nitrate by snow. The lower ratio in snow than rain is consistent with the measurement results of foreign other investigators and with scavenging theory of atmospheric aerosols. Although substantial $nss-SO_4^{2-}$ and $NO_3^-$ were observed in both of rain and snow, the corresponding presence of $NH_4^+,\;nss-Ca^{2+},\;nss-K^+$ suggested the significant neutralization of rain and snow. Differences in chemical composition of non-sea salt ions and neutralizing rapacity of $NH_4^+,\;nss-Ca^{2+}$, and $nss-K^+$ between rain and snow could explain the acidity difference of rain and snow. Snow affected that winter precipitation could be less acidic due to its higher neutralizing rapacity.

Metal Speciation in the Lagoon Sediment Interstitial Water from the Northeast Coast, Korea (동해안 석호 퇴적물의 간극수에 함유된 금속류의 화학종 분포)

  • Kim, Dong-Jin;Kim, Min-Chul;Yoo, Jin-Yull;Kwon, Sang-Yong;Seo, Yong-Chan;Yang, Jae-E.;Oh, Seung-Yoon;Ok, Yong-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.712-720
    • /
    • 2008
  • Sediment and interstitial water samples from ten lagoons in the Northeastern coastal part of South Korea were analyzed to obtain the concentrations of metals and inorganic ligand. These data, coupled with pH and ionic strength, were used to compute the aqueous speciation of the metals in the interstitial water using the MINTEQA2 equilibrium program. The K and Na were almost entirely present as the free aqua ions, but Co, Cd, Ni, Pb and Zn were existed as various metal-ligand complexes. Metals such as Al, As, and Cr formed 3$\sim$4 metal-ligand complexes. In the interstitial water with high chloride concentrations, almost all of the metals were dominated by free aqua ions. Metals of Cd, Co, Ni, Pb and Zn were bound as chloride-metal complexes of the type M$^{x+}$ + xCl$^-$, and Fe, Mn and Mg were dominated by sulfate equilibria(M$^{2+}$ + SO$_4{^{2-}}$). Hg(II) was speciated as HgCl$_2$(aq), HgCl$_3{^-}$ and HgCl$_4{^-}$. However, in the interstitial water with low chloride concentrations, Hg(II) and Cd(II) were existed as chloride-metal complexes, metals of Cu, Mg, Mn, Ni, Pb and Zn were dominated by sulfate equilibria, and the speciation of Fe(II) was bound as Fe(OH)$_2{^+}$, Fe(OH)$_3$(aq). However, Al, As and Cr were dominated by hydroxy-metal and oxide-metal species in nearly all of the lagoons.

Adsorption of Trace Metals on the Natural Amorphous Iron Oxyhydroxide from the Taebag Coal Mine Area (태백 탄전 지대의 비정질 철 수산화물에 대한 희귀원소의 흡착)

  • Yu, Jae-Young;Park, In-Kyu
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.1
    • /
    • pp.23-32
    • /
    • 1994
  • To determine the apparent equilibrium constants, K$_{ad,app}$, for the adsorption reactions of trace metals on amorphous iron oxyhydroxide (AIO) in the Taebag coal mine area, time-adsorption and pH-adsorption experiments were performed for a selected bottom sediment mainly comprised of AIO from the study area. The results from the adsorption experiments indicate that most of the trace metals, except Pb, achieve equilibrium states with AIO and thus, the calculated K$_{ad,app}$ may represent the true apparent equilibrium constants. K$_{ad,app}$ and the stoichiometric coefficients of proton, x, of the adsorption reactions between the trace metals and AIO were respectively calculated from the intercepts and slopes of the regression lines of log($\Gamma$/ [M]$_{aq}$)against pH provided by pH-adsorption experiments. The calculated K$_{ad,app}$ this study has the values of the range from 10$^{-4.5}$ to 10$^{2.75}$ , which is much different from the reported values by other investigators for simple experimental systems. K$_{ad,app}$ of this study is more or less close but not exactly pertinent to the estimated values for the other natural systems. It indicates that K$_{ad,app}$ for the adsorption reactions in the aquatic system in the study area is unique and thus should be determined befor the adsorption modelling. The calculated x of this study has the values of the range from -0.3 to 0.7, which is also much different from what most geochemists generally accept. The discrepancy in x may be due to the competition among different kinds of ionic species on the adsorption site or simulataneous occurrence of different kinds of adsorption reactions. The results from this study should help construct an appropriate adsorption model for the aquatic systems polluted by the coal mine drainage in the Taebag area. With the constructed model, one can describe the concentration variations of trace metals due to the adsorption in the system, which is an essential part of the investigation on the water quality affected by coal mine drainage in the Taebag coal field.

  • PDF

Physico-chemical Characteristics and In situ Fish Enclosure Bioassays on Wastewater Outflow in Abandoned Mine Watershed (폐광산 지역의 유출수에 대한 이.화학적 수질특성 및 Enclosure 어류 노출시험 평가)

  • An, Kwang-Guk;Bae, Dae-Yeul;Han, Jeong-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.218-231
    • /
    • 2012
  • The objectives of this study were to evaluate the physico-chemical water quality, trophic and tolerance guilds in the control ($C_o$) and impacted streams of the abandoned mine, along with the ecological health, using a multimetric health model and physical habitat conditions of Qualitative Habitat Evaluation Index (QHEI), during the period of three years, 2005~2007. Also, eco-toxicity ($EE_t$) enclosure tests were conducted to examine the toxic effects on the outflows from the mine wastewater, using the sentinel species of Rhynchocypris oxycephalus, and we compared the biological responses of the control ($C_o$) and treatment (T) to the effluents through a Necropybased Health Assessment Index ($N_b$-HAI). Tissue impact analysis of the spleen, kidney, gill, liver, eyes, and fins were conducted in the controlled enclosure experiments (10 individuals). According to the comparisons of the control ($C_o$) vs. the treatment (T) in physicochemical water quality, outflows from the abandoned mine resulted in low pH of 3.2, strong acid wastewater, high ionic concentrations, based on an electrical conductivity, and high total dissolved solid (TDS). Physical habitat assessments, based on Qualitative Habitat Evaluation Index (QHEI) did not show any statistical differences (p>0.05) in the sampling sites, whereas, the $M_m$-EH model values in a multimetric ecological health ($M_m$-EH) model of the Index of Biological Integrity (IBI), using fish assemblages, were 16~20 (fair condition) in the control and all zero (0, poor condition) in the impacted sites of mine wastewater. In addition, in enclosure eco-toxicity ($EE_t$) tests, the model values of $N_b$-HAI ranged between 0 and 3 in the controls during the three years, indicating an excellent~good condition (Ex~G), and were >100 (range: 100~137) in the impacted sites, which indicates a poor condition (P). Under the circumstances, organ tissues, such as the liver, kidney, and gills were largely impaired, so that efficient water quality managements are required in the outflow area of the abandoned mine watershed.

Formation and Dissociation Kinetics of Zinc(II) Complexes of Tetraaza-Crown-Alkanoic Acids (Zinc(Ⅱ) Tetraaza-Crown-Allkanoic Acids 착물의 형성 및 해리 반응속도론)

  • Choi, Ki Young;Kim, Dong Won;Kim, Chang Suk;Park, Byung Bin;Choi, Suk Nam;Hong, Choon Pyo;Ryu, Hae Il
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.5
    • /
    • pp.403-409
    • /
    • 2000
  • The formation and dissociation rates of $Zn^{2+}$ Complexes with l,4,7,10-tetraaza-13,16-diox-acyclooctadecane-N,N',N",N'"-tetraacetic acid (1), 1,4,7,10-tetraaza-13,16- dioxacyclooctadecane-N,N',N",N'"-tetramethylacetic acid (2), and 1,4,7,10-tetraaza-13,16- dioxacyclooctadecane-N,N',N",N'"-tetrapropionic acid(3) have been measured by stopped-flow and conventional spectrophotometry. Observations were made at 25.0$\pm$0.1 $^{\circ}C$ and at an ionic strength of 0.10 M NaClO$_4$. The formation reactions of $Zn^{2+}$ ion with 1 and 2 took place by the rapid formation of an intermediate complex (ZnH$_3L^+$) in which the $Zn^{2+}$ ion is incompletely coor-dinated. This might then lead to be a final product in the rate-determining step.ln the pH range 4.76-5.76, the diprotonated (H2L2-) form is the kinetically active species despite of its low concentration. The stability con-stants (log$K_{(ZnH$_3$3$L^+$)}$) and specific water-assisted rate constants (koH) of intermediate complexes have been deter-mined from the kinetic data. The dissociation reactions of $Zn^{2+}$ complexes of 1,2, and 3 were investigated with $Cu^{2+}$ ions as a scavenger in acetate buffer. All complexes exhibit acid-independent and acid-catalyzed con-tributions. The effect of buffer and $Cu^{2+}$ concentration on the dissociation rate has also been investigated. The ligand effect on t dissociation rate of $Zn^{2+}$ complexes is discussed in terms of the side-pendant armsand the chelate ring sizes of the ligands.

  • PDF

Geochemical Modeling on Behaviors of Radionuclides (U, Pu, Pd) in Deep Groundwater Environments of South Korea (한국 심부 지하수 환경에서의 방사성 핵종(우라늄, 플루토늄, 팔라듐)의 지화학적 거동 모델링)

  • Jaehoon Choi;SunJu Park;Hyunsoo Seo;Hyun Tai Ahn;Jeong-Hwan Lee;Junghoon Park;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.847-870
    • /
    • 2023
  • The safe disposal of high-level radioactive waste requires accurate predictions of the long-term geochemical behavior of radionuclides. To achieve this, the present study was conducted to model geochemical behaviors of uranium (U), plutonium (Pu), and palladium (Pd) under different hydrogeochemical conditions that represent deep groundwater in Korea. Geochemical modeling was performed for five types of South Korean deep groundwater environment: high-TDS saline groundwater (G1), low-pH CO2-rich groundwater (G2), high-pH alkaline groundwater (G3), sulfate-rich groundwater (G4), and dilute (fresh) groundwater (G5). Under the pH and Eh (redox potential) ranges of 3 to 12 and ±0.2 V, respectively, the solubility and speciation of U, Pu, and Pd in deep groundwater were predicted. The result reveals that U(IV) exhibits high solubility within the neutral to alkaline pH range, even in reducing environment with Eh down to -0.2 V. Such high solubility of U is primarily attributed to the formation of Ca-U-CO3 complexes, which is important in both G2 located along fault zones and G3 occurring in granitic bedrocks. On the other hand, the solubility of Pu is found to be highly dependent on pH, with the lowest solubility in neutral to alkaline conditions. The predominant species are Pu(IV) and Pu(III) and their removal is predicted to occur by sorption. Considering the migration by colloids, however, the role of colloid formation and migration are expected to promote the Pu mobility, especially in deep groundwater of G3 and G5 which have low ionic strengths. Palladium (Pd) exhibits the low solubility due to the precipitation as sulfides in reducing conditions. In oxidizing condition, anionic complexes such as Pd(OH)3-, PdCl3(OH)2-, PdCl42-, and Pd(CO3)22- would be removed by sorption onto metal (hydro)oxides. This study will improve the understanding of the fate and transport of radionuclides in deep groundwater conditions of South Korea and therefore contributes to develop strategies for safe high-level radioactive waste disposal.