• Title/Summary/Keyword: Ionic species

Search Result 281, Processing Time 0.024 seconds

Solubilization and Photosensitizing Properties of Some Anthracene Derivatives in Aqueous Micellar Solutions (수용성 미셀용액에서 몇 가지 안트라센 유도체의 가용화 및 감광화 성질)

  • Jeong Soo Ko;Dong Sul Han;Hyung Sik Oh;Byung Kwan Park;Chong Hyun Kim;Se Woung Oh
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.452-460
    • /
    • 1991
  • The chemical evidence for involvement of singlet oxygen during photoirradiation for 2-ethylanthracene [2-EA] and 9-phenylanthracene [9-PA] was based on the rapid decomposition of 1,3-diphenylisobenzofuran [DPBF] in methanol-water mixture and aqueous CTAB, and SDS micellar solutions. The average microenvironmental polarities of 2-EA and 9-PA were estimated by UV spectroscopic characteristics sensitive to the polarity of solvent. When 2-EA and 9-PA were solubilized in aqueous CTAB, SDS and Brij 35 solutions, their average microenvironmental polarities were polar, and their microenvironmental polarity parameter showed little dependence on the ionic properties of the micelles. The average microenvironmental polarity of 2-EA was similar to the polarity of 40% (w/w) aqueous ethanol, and that of 9-PA was similar to the polarity between 30 and 40% (w/w) aqueous ethanol. It was found that the greater part of these species might be distributed at the surface of micelles when they were solubilized in aqueous micellar solutions. The methanol-water mixture solution appeared to have characteristics more favorable for photooxidation reaction than aqueous micellar solutions.

  • PDF

Ion Compositional Existence Forms of PM10 in Seoul Area (서울지역 미세먼지(PM10) 중 이온성분의 존재형태 추정)

  • Lee, Kyoung-Bin;Kim, Shin-Do;Kim, Dong-Sool
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.197-203
    • /
    • 2015
  • Particulate matter (PM) has emitted in many regions of the world and is causing many health-related problems. Thus reasonable politics and solutions are needed to reduce PM in Seoul. Further it is required to clearly explain the major portions of chemical components contained in $PM_{10}$ to figure out the characteristics of $PM_{10}$, and to develop effective reduction measures in order to decrease the adverse effects of $PM_{10}$. $PM_{10}$ samples were collected in Seoul and analyzed their ions to examine the physical and chemical characteristics of ionic species. Since hydrogen ion ($H^+$) and carbonate ion (${CO_3}^{2-}$)) cannot be analyzed by Ion chromatography (IC), concentrations of $H^+$ and ${CO_3}^{2-}$ were initially estimated by pH and equivalent differences between anions and cations in this study. Starting from the study findings, good combination results for compositional patterns between anions and cations were obtained by applying a mathematical modelling technique that was based on the mass balance principle. The ions in $PM_{10}$ were combined with $H^+$, ${CO_3}^{2-}$, and supplement for $NO_3{^-}$, $Cl^-$ formed such compounds $NH_4Cl$, $NH_4NO_3$, $CaSO_4$, $(NH_4)_2SO_4$, $NaNO_3$, NaCl, $Na_2CO_3$, and $(NH_4)_2CO_3$ in the study area.

Design of Bias Circuit for Measuring the Multi-channel ISFET (다채널 ISFET 측정용 단일 바이어스 회로의 설계)

  • Cho, Byung-Woog;Kim, Young-Jin;Kim, Chang-Soo;Choi, Pyung;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.31-38
    • /
    • 1998
  • Multi-channel sensors can be used to increase the reliability and remove the random iloise in ion-sensitive field effect transistors(ISFETs). Multi-channel sensors is also an essential step toward potential fabrication of sensors for several ionic species in one device. However, when the multi-channel sensors are separately biased, the biasing problems become difficult, that is to say, the bias circuit is needed as many sensors. In this work, a circuit for biasing the four pH-ISFETs in null-balance method, where bias voltages are switched, was proposed. The proposed concept is need only one bias circuit for the four sensors. Therefore it has advantages of smaller size and lower power consumption than the case that all sensors are separately biased at a time. The proposed circuit was tested with discrete devices and its performance was investigated. In the recent trend, sensor systems are implemented as portable systems. So the verified measurement circuit was integrated by using the CMOS circuit. Fortunately, ISFET fabrication process can be compatible with CMOS process. Full circuit has a mask area of $660{\mu}m{\times}500{\mu}m$. In the future, this step will be used for developing the smart sensor system with ISFET.

  • PDF

Adsorption Properties of U, Th, Ce and Eu by Myogi Bentonite Occurring in Japan (일본 묘기광산 벤토나이트의 물리화학적 성질 및 U, Th, Ce 및 Eu 흡착특성)

  • Song Min-Sub;Koh Sang-Mo;Kim Won-Sa
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.3 s.45
    • /
    • pp.183-194
    • /
    • 2005
  • The mineralogical, physicochemical and thermal properties of the Myogi bentonite occurring in Japan were measured. A adsorption properties of U, Th, Ce and Eu ions on the Myogi bentonite were also investigated in different solution concentrations and pH conditions. The Myogi bentonite showed a strong alkaline character (pH 10.4), very high swelling, viscosity property and CEC, and a slow flocculation behavior due to the strong hydrophilic property. By the thermal analysis, the dehydroxylation of crystal water in bulk and clay fractions of the Myogi bentonite occur at $591^{\circ}C$ and $658^{\circ}C$, respectively, The adsorption experiments of ions such as U, Th, Ce and Eu were conducted for 0.2 g bentonites with 20mL solutions of various concentrations and different pH conditions with pH 3, 5, 7, 9, and 11. As a result, the Myogi bentonite showed excellent adsorption capacities for Ce, Th and Eu ions, whereas U ion showed very low adsorption capacity. Generally, Ce, Th and Eu ions showed the similar adsorption properties for the different concentrated solutions and pH conditions. These adsorption properties seem to be affected by the formation of various forms of chemical species and precipitation as well as ionic exchange reaction and surface adsorptions on smectite. Some associated zeolite minerals perhaps have some effects on the adsorption of U, Th, Ce and Eu on Myogi bentonite.

Synthesis, Characterization and ESR Studies of New Copper(II) Complexes of Vicinal Oxime Ligands (Vicinal Oxime 리간드의 새로운 구리(II) 착물에 대한 합성, 특성 및 ESR 연구)

  • El-Tabl, Abdou S.;Shakdofa, Mohamad M.E.;El-Seidy, Ahmed M.A.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.603-611
    • /
    • 2011
  • Ethoxylacetyl oxime ligands [HL, (1) and $H_2L^1$, (3)] react with copper(II) acetate monohydrate yield octahedral and square planar complexes, respectively. The complexes have been postulated due to elemental analyses, IR, UVVis. spectra, magnetic susceptibility, conductivity and ESR spectra. Molar conductance of the complexes in DMF indicates a non-ionic character. The ESR spectra of [$(L)_2Cu(H_2O)_2$], (2) complex at room temperature and 77K are characteristic of an axial symmetry ($d_{x2-y2}$) with covalent bond character and have a large line width typical of dipolar interactions. However, [$(L^1)Cu$], (4) complex in the solid state showed spectra of marked broadening and loss of hyperfine splitting confirming spinexchange interactions between the copper(II) sites. The spectrum of the doped copper(II) complex at room temperature showed super-hyperfine splitting from coordinated nitrogen atoms and it has an axial type ($d_{x2-y2}$) with covalent bond character and an essentially square-planar arrangement around the copper(II) ion. The spectrum of [$(L^1)Cu$], (4) in frozen methanol at 77K was characteristic of the triplet state of a dimer species and the distance found between the two copper(II) centers was calculated and is equal to 4.8 ${\AA}$.

Bio-Derived Poly(${\gamma}$-Glutamic Acid) Nanogels as Controlled Anticancer Drug Delivery Carriers

  • Bae, Hee Ho;Cho, Mi Young;Hong, Ji Hyeon;Poo, Haryoung;Sung, Moon-Hee;Lim, Yong Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1782-1789
    • /
    • 2012
  • We have developed a novel type of polymer nanogel loaded with anticancer drug based on bio-derived poly(${\gamma}$-glutamic acid) (${\gamma}$-PGA). ${\gamma}$-PGA is a highly anionic polymer that is synthesized naturally by microbial species, most prominently in various bacilli, and has been shown to have excellent biocompatibility. Thiolated ${\gamma}$-PGA was synthesized by covalent coupling between the carboxyl groups of ${\gamma}$-PGA and the primary amine group of cysteamine. Doxorubicin (Dox)-loaded ${\gamma}$-PGA nanogels were fabricated using the following steps: (1) an ionic nanocomplex was formed between thiolated ${\gamma}$-PGA as the negative charge component, and Dox as the positive charge component; (2) addition of poly(ethylene glycol) (PEG) induced hydrogen-bond interactions between thiol groups of thiolated ${\gamma}$-PGA and hydroxyl groups of PEG, resulting in the nanocomplex; and (3) disulfide crosslinked ${\gamma}$-PGA nanogels were fabricated by ultrasonication. The average size and surface charge of Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels in aqueous solution were $136.3{\pm}37.6$ nm and $-32.5{\pm}5.3$ mV, respectively. The loading amount of Dox was approximately 38.7 ${\mu}g$ per mg of ${\gamma}$-PGA nanogel. The Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels showed controlled drug release behavior in the presence of reducing agents, glutathione (GSH) (1-10 mM). Through fluorescence microscopy and FACS, the cellular uptake of ${\gamma}$-PGA nanogels into breast cancer cells (MCF-7) was analyzed. The cytotoxic effect was evaluated using the MTT assay and was determined to be dependent on both the concentration and treatment time of ${\gamma}$-PGA nanogels. The bio-derived ${\gamma}$-PGA nanogels are expected to be a well-designed delivery carrier for controlled drug delivery applications.

Mode of Action of Several Surfactants on Paraquat Efficacy (Paraquat 활성에 미치는 계면활성제의 작용기구)

  • Choi, Jung-Sup;Hwang, In-Taek;Kim, Jin-Seok;Kim, Tae-Joon;Cho, Kwang-Yun
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.3
    • /
    • pp.193-201
    • /
    • 2002
  • The effects of 24 ionic and nonionic surfactants on paraquat (1, 1' -dimethyl-4 4'-bipyridinium) efficacy were investigated with several annual plant species under greenhouse conditions. The paraquat efficacy was decreased or even lost when treated with the anionic surfactants tested. However, the efficacy of paraquat was significantly increased by 7 nonionic surfactants such as sorbitan palmitate, sorbitan stearate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene stearyl ether, polyoxyethylene laurylamine ether, and polyoxyethylene stearylamine ether. Among these tested surfactants, 0.08% of polyoxyethylene laurylamine ether most significantly increased the paraquat activity, and the $GR_{50}$ value of paraquat with polyoxyethylene laurylamine ether was 1.6 times lower than the $GR_{50}$ value without polyoxyethylene laurylamine ether. In in vitro experiments, cellular leakage and chlorophyll contents between the application with and without polyoxyethylene laurylamine ether did not show significant changes. The absorption rate of $^{14}C$ paraquat in the treatment with polyoxyethylene laurylamine ether showed an absorption rate of 1.6 times higher than without surfactant. These results suggest that using compatible surfactants would increase the paraquat efficacy, and this increasing are due to improved absorption rate with the surfactant.

Research and Development for Decontamination System of Spent Resin in Hanbit Nuclear Power Plant (한빛원전 폐수지 제염공정 개발연구)

  • Sung, Gi Hong
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.217-221
    • /
    • 2015
  • When reactor coolant leaks occur due to cracks of a steam generator's tube, radioactive materials contained in the primary cooling water in nuclear power plant are forced out toward the secondary systems. At this time the secondary water purification resin in the ion exchange resin tower of the steam generator blowdown system is contaminated by the radioactivity of the leaked radioactive materials, so we pack this in special containers and store temporarily because we could not dispose it by ourselves. If steam generator tube leakage occurs, it produces contaminated spent resins annually about 5,000~7,000 liters. This may increase the amount of nuclear waste productions, a disposal working cost and a unit price of generating electricity in the plant. For this reasons, it is required to develop a decontamination process technique for reducing the radioactive level of these resins enough to handle by the self-disposal method. In this research, First, Investigated the structure and properties of the ion exchange resin used in a steam generator blowdown system. Second, Checked for a occurrence status of contaminated spent resin and a disposal technology. Third, identified the chemical characteristics of the waste radionuclides of the spent resin, and examined ionic bonding and separation mechanism of radioactive nuclear species and a spent resin. Finally, we carried out the decontamination experiment using chemicals, ultrasound, microbubbles, supercritical carbon dioxide to process these spent resin. In the case of the spent resin decontamination method using chemicals, the higher the concentration of the drug decontamination efficiency was higher. In the ultrasound method, foreign matter of the spent resin was removed and was found that the level of radioactivity is below of the MDA. In the microbubbles method, we found that the concentration of the radioactivity decreased after the experiment, so it can be used to the decontamination process of the spent resin. In supercritical carbon dioxide method, we found that it also had a high decontamination efficiency. According to the results of these experiments, almost all decontamination method had a high efficiency, but considering the amounts of the secondary waste productions and work environment of the nuclear power plant, we judged the ultrasound and supercritical carbon dioxide method are suitable for application to the plant and we established the plant applicable decontamination process system on the basis of these two methods.

Electrochemical Mass Transport Control in Biomimetic Solid-State Nanopores (생체모사형 나노포어를 활용한 전기화학 기반 물질전달 조절 시스템)

  • Soongyu Han;Yerin Bang;Joon-Hwa Lee;Seung-Ryong Kwon
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.4
    • /
    • pp.43-55
    • /
    • 2023
  • Mass transport through nanoporous structures such as nanopores or nanochannels has fundamental electrochemical implications and many potential applications as well. These structures can be particularly useful for water treatment, energy conversion, biosensing, and controlled delivery of substances. Earlier research focused on creating nanopores with diameters ranging from tens to hundreds of nanometers that can selectively transport cationic or anionic charged species. However, recent studies have shown that nanopores with diameters of a few nanometers or even less can achieve more complex and versatile transport control. For example, nanopores that mimic biological channels can be functionalized with specific receptors to detect viruses, small molecules, and even ions, or can be made hydrophobic and responsive to external stimuli, such as light and electric field, to act as efficient valves. This review summarizes the latest developments in nanopore-based systems that can control mass transport based on the size of the nanopores (e.g., length, diameter, and shape) and the physical/chemical properties of their inner surfaces. It also provides some examples of practical applications of these systems.

Review of Thermodynamic Sorption Model for Radionuclides on Bentonite Clay (벤토나이트와 방사성 핵종의 열역학적 수착 모델 연구)

  • Jeonghwan Hwang;Jung-Woo Kim;Weon Shik Han;Won Woo Yoon;Jiyong Lee;Seonggyu Choi
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.515-532
    • /
    • 2023
  • Bentonite, predominantly consists of expandable clay minerals, is considered to be the suitable buffering material in high-level radioactive waste disposal repository due to its large swelling property and low permeability. Additionally, the bentonite has large cation exchange capacity and specific surface area, and thus, it effectively retards the transport of leaked radionuclides to surrounding environments. This study aims to review the thermodynamic sorption models for four radionuclides (U, Am, Se, and Eu) and eight bentonites. Then, the thermodynamic sorption models and optimized sorption parameters were precisely analyzed by considering the experimental conditions in previous study. Here, the optimized sorption parameters showed that thermodynamic sorption models were related to experimental conditions such as types and concentrations of radionuclides, ionic strength, major competing cation, temperature, solid-to-liquid ratio, carbonate species, and mineralogical properties of bentonite. These results implied that the thermodynamic sorption models suggested by the optimization at specific experimental conditions had large uncertainty for application to various environmental conditions.