• Title/Summary/Keyword: Ionic polymer-metal composite (IPMC)

Search Result 49, Processing Time 0.025 seconds

Development of Fuzzy control and Modeling of IPMC Actuator for the Endoscopic Microcapsule (캡슐형 내시경 로봇의 IPMC 액추에이터 모델링 및 퍼지 제어 알고리듬 개발에 대한 연구)

  • 오신종;김훈모;최혁렬;전재욱;남재도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.39-48
    • /
    • 2003
  • The Ionic Polymer Metal Composite (IPMC) is one of the electroactive polymer (EAP) have potential application as micro actuators. In this study, IPMC is used as actuator to control of the direction for the endscopic microcapsule. Because it bends in water and wet conditions by applying a low voltage (1∼3 V) to its surfaces. The basic characteristics and the static modeling of IPMC are discussed. Also the dynamic modeling is performed using the Lagrange' equation. Computer simulation results show that the performed modeling guarantee similarity of actual system.

A Study on the Control of an IPMC Actuator Using an Adaptive Fuzzy Algorithm

  • Oh, Sin-Jong;Kim, Hunmo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • The ionic Polymer Metal Composite (IPMC) is one of the electroactive polymers (EAP) that was shown to have potential application as an actuator It bends by applying a low voltage current (1∼3 V) to its surfaces when containing water In this paper, the basic characteristics and the static & dynamic modeling of IPMC is discussed. In modeling and analysis, the equations of motion, which describe the total dynamics of the system, are driven. To control the position of the IPMC actuator, an adaptive fuzzy algorithm is used. IPMC is a time varying system because the some parameters vary with the passage of time. In this paper, the modeling and control of IPMC is introduced.

SDRE controller considering Multi Observer applied to nonlinear IPMC model

  • Bernat, Jakub;Kolota, Jakub;Stepien, Slawomir
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Ionic Polymer Metal Composite (IPMC) is an electroactive polymer (EAP) and a promising candidate actuator for various potential applications mainly due to its flexible, low voltage/power requirements, small and compact design, and lack of moving parts. Although widely used in industry, this material requires accurate numerical models and knowledge of optimal control methods. This paper presents State-Dependent Riccati Equation (SDRE) approach as one of rapidly emerging methodologies for designing nonlinear controllers. Additionally, the present paper describes a novel method of Multi HGO Observer design. In the proposed design, the calculated position of the IPMC strip accurately tracks the target position, which is illustrated by the experiments. Numerical results and comparison with experimental data are presented and the effectiveness of the proposed control strategy is verified in experiments.

Ionic Polymer Transducers in sensing: the streaming potential hypothesis

  • Weiland, Lisa Mauck;Akle, Barbar
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.211-223
    • /
    • 2010
  • Accurate sensing of mechanical strains in civil structures is critical for optimizing structure reliability and lifetime. For instance, combined with intelligent control systems, electromechanical sensor output feedback has the potential to be employed for nondestructive damage evaluation. Application of Ionic Polymer Transducers (IPTs) represents a relatively new sensing approach with more than an order of magnitude higher sensitivity than traditional piezoelectric sensors. The primary reason this sensor has not been widely used to date is an inadequate understanding of the physics responsible for IPT sensing. This paper presents models and experiments defending the hypothesis of a streaming potential sensing mechanism.

Vibration Characteristics of Patterned IPMC Actuator (패턴된 IPMC 작동기의 진동특성)

  • Jeon, Jin-Han;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.718-721
    • /
    • 2007
  • The ionic-polymer-metal-composite actuators have the best merit for bio-mimetic locomotion because of their large bending performance. Especially, they have the advantage for mimicking a fish-like motion because IPMCs are useful to be actuated in water. So we have developed IPMC actuators with multiple electrodes for realization of biomimetic motion. This actuator is fabricated by combining electroless plating and electroplating techniques capable of patterning precisely and controlling a thickness of Pt electrode layer. The FRF analysis was conducted by a mechanical shaker and direct electrical excitation which is based on sweep sine wave function. From this result, the proper young‘s modulus of Platinum was investigated and applied on expecting the vibration characteristics of patterned IPMC actuator. The calculated maximum displacement of the patterned IPMC was 2.32mm under an applied 4mN/mm. The natural frequency was increased however displacement was decreased in according to increase a thickness of Pt.

  • PDF

Fabrication of MDOF IPMC Actuators to Generate Undulatory Motion (파동형 움직임이 가능한 다자유 IPMC 구동기 제작)

  • Jeon, Jin-Han;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.119-123
    • /
    • 2006
  • The ionic-polymer-metal-composite actuators have the best merit for bio-mimetic locomotion because of their large bending performance. Especially, they have the advantage for mimicking a fish-like motion because IPMCs are useful to be actuated in water. So we have developed IPMC actuators with multiple electrodes for realization of biomimetic motion. Generally, the IPMC actuator has been fabricated in electroless plating technique, while it needs very long fabrication time and shows poor repeatability in the actuation performance owing to the variables in chemical fabrication process. Therefore, the novel fabrication methods were investigated by combining electroless plating and electroplating techniques capable of patterning precisely. On the whole, two different methods were compared and analyzed with similar thickness level of Platinum electrodes. Present results show that mixing chemical reduction and electroplating can be a promising candidate for electrode patterning.

  • PDF

Power supply development for marine environmental monitoring sensors using the IPMC (IPMC를 이용한 해양 환경 모니터링 센서용 전원 장치 개발)

  • Kang, Min-woo;Kim, Min;Choi, Myoung-hoon;Jung, Jae-hoon;Park, Won-hyun;Kim, Gwan-hyung;Byun, Ki-sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.136-137
    • /
    • 2015
  • 이온성 고분자 금속 복합체(Ionic polymer metal composite, IPMC)는 전기 활성 고분자(Electro active polymer, EAP)중의 하나로 IPMC의 양 전극에 전기적인 자극을 가하면 굽힘 변형이 발생하고, 반대로 기계적인 자극이 주어지면 양 전극 사이에 전위차가 발생하여 전기를 얻을 수 있어 차세대 액추에이터와 센서로의 적용이 가능하다. 본 논문에서는 IPMC를 센서 소재로 사용하여 해양 환경 모니터링 센서에 전원을 공급하는 장치 개발을 설명하고자 한다.

  • PDF

Electrochemical Response of Polymer Actuators using Finite Element Formulation and ANSYS/Emag

  • Kang, Sung-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.369-375
    • /
    • 2010
  • The two-dimensional finite element formulation for the basic field equations governing electrochemical responses of ionic conducting polymer-metal composite(IPMC) actuators is proposed in the present study. Biaxial deformation of a platinum plated Nafion actuator having 4 electrodes is dominated by electro-osmosis of hydrated ions and self-diffusion of free water molecules. Some numerical studies for IPMC actuators with electric field are carried out in order to show the validity of the proposed formulation and electric field analysis for the initial condition of total charge distribution are conducted using commercial code ANSYS/Emag.

Design and Analysis of IPMC Actuator-driven ZNMF Pump for Air Flow Control of MAV's Wing (IPMC 작동기로 구동되는 초소형 비행체 날개의 공기흐름 조절용 ZNMF(zero-net-mass-flux) 펌프의 예비설계 및 해석)

  • Lee, Sang-Gi;Kim, Gwang-Jin;Park, Hun-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.22-30
    • /
    • 2006
  • In this paper, a systematic design method on an IPMC(ionic polymer-metal composite)-driven ZNMF(zero-net-mass-flux) pump is introduced for the flow control of an MAV's (micro air vehicle) wing. Since the IPMC is able to generate a large deformation under a low input voltage along with its ability to operate in air, and is easier to be manufactured in a small size, it is considered to be an ideal material of the actuating diaphragm. Through the numerical methods, an optimal shape of the IPMC diaphragm was found for maximizing the stroke volume. Based on the optimal IPMC diaphragm, a proto-type ZNMF pump with a slot, was designed. By using the flight speed of the MAV considered in this work, the driving frequencies(~ 40 Hz) of IPMC diaphragm, and the flow velocity through the pump's slot, the calculated non-dimensional frequency and the momentum coefficient ensure the feasibility of the designed ZNMF pump as a flow control device.