• Title/Summary/Keyword: Ionic cross-linking

Search Result 29, Processing Time 0.025 seconds

Synthesis And Ionic Conductivity of Siloxane Based Polymer Electrolytes with Propyl Butyrate Pendant Groups

  • Jalagonia, Natia;Tatrishvili, Tamara;Markarashvili, Eliza;Aneli, Jimsher;Grazulevicius, Jouzas Vidas;Mukbaniani, Omar
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.36-43
    • /
    • 2016
  • Hydrosilylation reactions of 2.4.6.8-tetrahydro-2.4.6.8-tetramethylcyclotetrasiloxane with allyl butyrate catalyzed by Karstedt's, $H_2PtCl_6$ and Pt/C catalyst were studied and 2.4.6.8-tetra (propyl butyrate)-2.4.6.8-tetramethylcyclotetrasiloxane was obtained. The reaction order, activation energies and rate constants were determined. Ringopening polymerization of 2.4.6.8-tetra (propyl butyrate)-2.4.6.8-tetramethylcyclotetrasiloxane in the presence of $CaF_2$, LiF, KF and anhydrous potassium hydroxide in $60-70^{\circ}C$ temperature range was carried out and methylsiloxane oligomers with regular arrangement of propyl butyrate pendant groups were obtained. The synthesized products were studied by FTIR and NMR spectroscopy. The polysiloxanes were characterized by wide-angle X-ray, gel-permeation chromatography and DSC analyses. Via sol-gel processes of oligomers doped with lithium trifluoromethylsulfonate or lithium bis (trifluoromethylsulfonyl)imide, solid polymer electrolyte membranes were obtained. The dependences of ionic conductivity of obtained polyelectrolytes on temperature and salt concentration were investigated, and it was shown that electric conductivity of the polymer electrolyte membranes at room temperature changed in the range $3.5{\times}10^{-4}{\sim}6.4{\times}10^{-7}S/cm$.

Preparation and Characterization of Advanced Organic Polymer - Inorganic Composite Gel Electrolyte for Dye-sensitized Solar Cells (염료 감응 태양전지를 위한 고급 유기 고분자 - 무기 복합 겔형 전해질의 제조와 특성분석)

  • Akhtar, M. Shaheer;Park, Jung-Guen;Kim, Ui-Yeon;Lee, Hyun-Choel;Yang, O-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.350-354
    • /
    • 2009
  • In this work, polymer - inorganic composites have prepared using polymer such as polyethylene glycol (PEG)/poly (methyl methacrylate, PMMA) and inorganic nanofillers materials such as TiO2 nanotubes (TiNTs)/carbon nanotubes (CNTs). The extensive structural, morphological and ionic properties revealed that the high surface area and tubular feature of nanofillers improved the interaction and cross-linking to polymer matrix which is significantly enhanced the ionic conductivity and electrical properties of composite electrolytes. Comparably high conversion efficiency ~4.5% has been observed by using the newly prepared PEG-TiNTs composite solid electrolyte as compared with PMMA-CNTs electrolyte based DSSCs (~3%). The detailed comparative properties would be discussed in term of their structural, morphology, ionic and photovoltaic properties.

  • PDF

In-situ Cross-linked Gel Polymer Electrolyte Using Perfluorinated Acrylate as Cross-linker (과불소화된 아크릴레이트 가교제로 제조된 직접 가교형 겔 고분자 전해질의 전기화학적 특성)

  • Oh, Si-Jin;Shim, Hyo-Jin;Kim, Dong-Wook;Lee, Myong-Hoon;Lee, Chang-Jin;Kang, Yong-Ku
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • The gel polymer electrolyte(GPE) were prepared by in-situ thermal cross-linking reaction of homogeneous precursor solution of perfluorinated phosphate-based cross-linker and liquid electrolyte. Ionic conductivities and electrochemical properties of the prepared gel polymer electrolyte with the various contents of liquid electrolytes and perfluorinated organophosphate-based cross-linker were examined. The stable gel polymer electrolyte was obtained up to 97 wt% of the liquid electrolyte. Ionic conductivity and electrochemical properties of the gel polymer electrolytes with the various chain length of perfluorinated ethylene oxide and different content of liquid electrolytes were examined. The maximum ionic conductivity of liquid electrolyte was measured to be $1.02\;{\times}\;10^{-2}\;S/cm$ at $30^{\circ}C$ using the cross-linker($PFT_nGA$). The electrochemical stability of the gel polymer electrolyte was extended to 4.5 V. The electrochemical performances of test cells composed of the resulting gel polymer electrolyte were also studied to evaluate the applicability on the lithium polymer batteries. The test cell carried a discharge capacity of 136.11mAh/g at 0.1C. The discharge capacity was measured to be 91% at 2C rate. The discharge capacity decreased with increase of discharge rate which was due to the polarization. After 500th charge/discharge cycles, the capacity of battery decreased to be 70% of the initial capacity.

Characterization of ginsenoside compound K loaded ionically cross-linked carboxymethyl chitosan-calcium nanoparticles and its cytotoxic potential against prostate cancer cells

  • Zhang, Jianmei;Zhou, Jinyi;Yuan, Qiaoyun;Zhan, Changyi;Shang, Zhi;Gu, Qian;Zhang, Ji;Fu, Guangbo;Hu, Weicheng
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.228-235
    • /
    • 2021
  • Backgroud: Ginsenoside compound K (GK) is a major metabolite of protopanaxadiol-type ginsenosides and has remarkable anticancer activities in vitro and in vivo. This work used an ionic cross-linking method to entrap GK within O-carboxymethyl chitosan (OCMC) nanoparticles (Nps) to form GK-loaded OCMC Nps (GK-OCMC Nps), which enhance the aqueous solubility and stability of GK. Methods: The GK-OCMC Nps were characterized using several physicochemical techniques, including x-ray diffraction, transmission electron microscopy, zeta potential analysis, and particle size analysis via dynamic light scattering. GK was released from GK-OCMC Nps and was conducted using the dialysis bag diffusion method. The effects of GK and GK-OCMC Nps on PC3 cell viability were measured by using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Fluorescent technology based on Cy5.5-labeled probes was used to explore the cellular uptake of GK-OCMC Nps. Results: The GK-OCMC NPs had a suitable particle size and zeta potential; they were spherical with good dispersion. In vitro drug release from GK-OCMC NPs was pH dependent. Moreover, the in vitro cytotoxicity study and cellular uptake assays indicated that the GK-OCMC Nps significantly enhanced the cytotoxicity and cellular uptake of GK toward the PC3 cells. GK-OCMC Nps also significantly promoted the activities of both caspase-3 and caspase-9. Conclusion: GK-OCMC Nps are potential nanocarriers for delivering hydrophobic drugs, thereby enhancing water solubility and permeability and improving the antiproliferative effects of GK.

Preparation of magnetic gelatin microspheres for the targeting of drugs

  • Lee, Kang-Choon;Koh, Ik-Bae;Oh, In-Joon
    • Archives of Pharmacal Research
    • /
    • v.9 no.3
    • /
    • pp.145-152
    • /
    • 1986
  • Magnetically reponsive gelatin microspheres for the targeting of drugs have been prepared using a water-in-oil emulsion technique with chemical cross-linking of the protein. The manufacturing variables affecting microsphere size, size distribution and surface characteristics have been examined as well as the magnetic responsiveness in vitro. Sesame oil was utilized for non-aqueous phase and magentic gelatin microspheres of different size from 1. 89 to 14.88 $\mu\textrm{m}$ in mean diameter could be obtained with variation of HLB values of non-ionic surfactants. The content of magnetite which uniformly distributed throughout the microspheres was 26.7% (w/w). It was possible to control the localization of magnetic gelatin microspheres at specific sites within capilary models by using external magnetic field of under 5K gauss.

  • PDF

Cross-linkable Polymer Matrix for Enhanced Thermal Stability of Succinonitrile-based Polymer Electrolyte in Lithium Rechargeable Batteries

  • Ryou, Myung-Hyun;Lee, Dong-Jin;Lee, Je-Nam;Lee, Hong-Kyeong;Seo, Myung-Won;Lee, Hye-Won;Shin, Weon-Ho;Lee, Yong-Min;Choi, Jang-Wook;Park, Jung-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.198-203
    • /
    • 2011
  • A polymer electrolyte was prepared by using polyvinylidenefluoride-co-hexafluoropropylene (PVdF-HFP) or poly(ethylene glycol) dimethacrylate (PEGDMA) as polymer matrices, succinonitrile as an additive, and lithium perchlorate as a lithium salt. Compared to the polymer electrolyte employing PVdF-HFP, the PEGDMA-based polymer electrolyte exhibits substantially superior thermal stability when exposed to high temperatures. Nonetheless, the ionic conductivity of the PEGDMA-based polymer electrolyte was preserved in a wide temperature range between $-20^{\circ}C$ and $80^{\circ}C$.

A Study on the Curing Properties of Kevlar/Epoxy Prepreg (케블라/에폭시 프리프레그의 경화특성에 관한 연구)

  • 제갈영순;이원철;권오혁;윤남균;임길수;안종기;박경준
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.1-7
    • /
    • 2001
  • The studies on the formulation and curing behaviors of Kevlar/Epoxy prepreg for NOSE CONE of aircraft were presented in this paper. Dielectrometer and differential scanning calorimeter were used in order to check the curing behaviors. This prepreg showed the lowest ionic viscosity around $120^{\circ}C$, and then the ionic viscosity was gradually increased up to $200^{\circ}C$. This indicated that the curing reaction of this prepreg started at $120^{\circ}C$ and the molecular weight was increased by the accelerated thermal cross-linking reaction. The loss factor and tan $\delta$ values were also measured and discussed. The loss factor behaviors of Kevlar/Epoxy prepreg, which is related to the fluidity of matrix, were fecund to be similar with that of ionic viscosity. The thermal reaction properties of this prepreg were also studied by differential scanning calorimeter.

  • PDF

A Study on the Curing Behaviors of Glass/Epoxy Prepreg by Dielectrometer and the Thermal Properties of Cured Glass/Epoxy Composites (Dielectrometer를 이용한 Glass/Epoxy 프리프레그의 경화거동 및 경화물의 열적 특성연구)

  • 제갈영순;이원철;전영재;윤남균
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.350-357
    • /
    • 2000
  • Curing behaviors of glass/epoxy prepreg for printed circuit boards (PCB) were studied by using dielectrometer and differential scanning calorimeter. This prepreg was showed the lowest ionic viscosity at about 115$^{\circ}C$, and then the ionic viscosity was gradully increased up to 15$0^{\circ}C$. This indicated that the curing reaction of this prepreg started at 115$^{\circ}C$ and the molecular weight was increased by the accelerated thermal cross-linking reaction. The loss factor and tan $\delta$ values were also measured and discussed. The dielectric behaviors of this prepreg system were also measured according to the cure cycle for PCB. This material was found to be thermally stable up to about 30$0^{\circ}C$ and then was showed an abrupt decomposition beyond this temperature.

  • PDF

Adsorption Characteristic of Ammonia by the Cation-Exchange Membrane (양이온 교환막에 의한 암모니아 흡착 특성)

  • Kim, Min;Choi, Hyuk-Jun;Yang, Kab-Suk;Heo, Kwang-Beom;Kim, Byoung-Sik
    • Membrane Journal
    • /
    • v.17 no.1
    • /
    • pp.54-60
    • /
    • 2007
  • In this research, the cation-exchange membrane (SS membrane) containing sulfonic acid group was prepared by radiation induced grafted polymerization onto a porous hollow fiber membrane to effectively remove ammonia which was produced by urea decomposition for peritoneum dialysis system. And the metal ionic cross-linking cation-exchange membrane (SS-M membrane) was prepared by the adsorption of metallic ions (Cu, Ni, Zn) to the SS membranes. The pure water flux and adsorption capacities of ammonia to SS and SS-M membranes were examined. The pure water flux of SS membrane decreased rapidly with the density of $SO_3H$ group increasing. As the metallic ions were adsorbed to the SS membrane, the pure water flux was increased. The adsorption capacities of ammonia at the SS membrane increased with increasing of density of $SO_3H$ group. The ion-exchange capacity of ammonia of the SS membrane was approximately proportional 1 : 1 to the density of $SO_3H$ group. The SS membrane had higher adsorption capacities than the SS-M membrane. The highest adsorption capacities of SS and SS-M membrane appeared the highest pH 9.

Partially Hydrolyzed Crosslinked Alginate-graft-Polymethacrylamide as a Novel Biopolymer-Based Superabsorbent Hydrogel Having pH - Responsive Properties

  • Pourjavadi A.;Amini-Fazi M. S.;Hosseinzadeh H.
    • Macromolecular Research
    • /
    • v.13 no.1
    • /
    • pp.45-53
    • /
    • 2005
  • In this study, a series of highly swelling hydrogels based on sodium alginate (NaAlg) and polymethacryl­amide (PMAM) was prepared through free radical polymerization. The graft copolymerization reaction was performed in a homogeneous medium and in the presence of ammonium persulfate (APS) as an initiator and N,N'-methylenebis­acrylamide (MBA) as a crosslinker. The crosslinked graft copolymer, alginate-graft-polymethacrylamide (Alg-g­PMAM), was then partially hydrolyzed by NaOH solution to yield a hydrogel, hydrolyzed alginate-graft-poly­methacrylamide (H-Alg-g-PMAM). During alkaline hydrolysis, the carboxamide groups of Alg-g-PMAM were converted into hydrophilic carboxylate anions. Either the Alg-g-PMAM or the H-Alg-g-PMAM was characterized by FTIR spectroscopy. The effects of the grafting variables (i.e., concentration of MBA, MAM, and APS) and the alkaline hydrolysis conditions (i.e., NaOH concentration, hydrolysis time, and temperature) were optimized systematically to achieve a hydrogel having the maximum swelling capacity. Measurements of the absorbency in various aqueous salt solutions indicated that the swelling capacity decreased upon increasing the ionic strength of the swelling medium. This behavior could be attributed to a charge screening effect for monovalent cations, as well as ionic cross-linking for multivalent cations. Because of the high swelling capacity in salt solutions, however, the hydrogels might be considered as anti-salt superabsorbents. The swelling behavior of the superabsorbing hydrogels was also measured in solutions having values of pH ranging from 1 to 13. Furthermore, the pH reversibility and on/off switching behavior, measured at pH 2.0 and 8.0, suggested that the synthesized hydrogels were excellent candidates for the controlled delivery of bioactive agents. Finally, we performed preliminary investigations of the swelling kinetics of the synthesized hydrogels at various particle sizes.