• Title/Summary/Keyword: Ion-Beam Incidence Angle

Search Result 12, Processing Time 0.027 seconds

The effect of Ion Beam modification of Polyimide surface on alignment properties of liquid crystals

  • Cho, Seong-Jin;Kim, Chan-Soo;Roh, Jin-A;Gwag, Jin-Seog;Kim, Jae-Chang
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.107-112
    • /
    • 2003
  • The alignment effect of liquid crystals on Polyimide surfaces bombarded by a low energy argon ion beam and the effect of pretilt angle on viewing characteristics of an LCD cell are discussed. The unidirectional out-of-plane liquid crystal tilt angle is varied with various ion beam irradiation conditions, such as the energy of the incident ions, the angle of incidence and exposure time. As low pretilt angle is profitable for wider viewing property, LCD cell with ion beam modified Polyimide layer show wider viewing characteristics.

LC Aligning Capabilities of a Nematic Liquid Crystal on Homeotropic Polyimide Surface by New Ion-beam Irradiation

  • Ok, Chul-Ho;Kang, Dong-Hun;Lee, Kang-Min;Han, Jin-Woo;Kim, Byoung-Yong;Oh, Byeong-Yun;Kim, Young-Hwan;Hwang, Jeong-Yeon;Lee, Sang-Keuk;Han, Jeong-Min;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.265-267
    • /
    • 2007
  • The liquid crystal(LC) aligning capabilities of a nematic liquid crystal(NLC) on a homeotropic polyimide(PI) surface using a new ion-beam method were studied. Exposure ion-beam of $45^{\circ}$ incidence angle shows a good LC alignment of the NLC on the homeotropic PI surface. Also, on the homeotropic PI surface, the tilt angle of the NLC by exposure ion-beam of $45^{\circ}$ incidence angle had a tendency to decrease as increased ion-beam energy density. And, on the homeotropic PI surface, the alignment character of the NLC with respect to ion-beam energy was good at 1500 eV. And we achieved satisfactory result for EO character.

A Study on The Surface Roughness Of Metal Workpieces Machined by Ion Sputtering (이온 스파터 가공에 의하 금속표면의 표면거칠기에 관한 연구)

  • 한응교;노병옥;박재민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.747-754
    • /
    • 1990
  • Since Ion sputter machining can perform removing processing in atom or molecule units in vacuum state, it has the merit that high precision processing is possible. In this study, therefore, the effect of incidence ion beam is certified to processing amount and surface roughness when longtimed processing is applied. As a result, processing amount is made almost constant with time and the best processing condition is achieved when the incidencial angle of ion is 55.deg.. In addition, processing time for the good surface roughness is different respectively to the quality of material and longtimed processing has some defect for achieving good surface roughness.

Alignment of Nematic Liquid Crystals on Polyimide Surface Bombarded by $Ar^+$ Beam

  • Gwag, Jin-Seog;Lee, Seo-Hern;Park, Kyoung-Ho;Park, Won-Sang;Han, Kwan-Yougn;Yoon, Tae-Hoon;Kim, Jae-Chang;Kim, Hee;Cho, Seong-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.409-412
    • /
    • 2002
  • We found that polyimide surfaces bombarded by a low energy argon ion beam align liquid crystals. The pretilt angle of the liquid crystals is controlled by ion beam parameters, such as the energy of the incident ions, the angle of incidence, exposure time and current density. The alignment direction of liquid crystal on substrates corresponded to ion beam direction. By argon ion beam the pretilt angle of the liquid crystals was controlled between $0.5^{\circ}$ and $4^{\circ}$for SE-3140 under the proper conditons. By the atomic force microscope (AFM), polyimide surfaces before and after bombarded by ion beam are compared.

  • PDF

Vertical alignment of liquid crystal on $a-SiO_x$film by using $Ar^+$ beam

  • Son, Phil-Kook;Park, Jeung-Hun;Cha, Sung-Su;Kim, Jae-Chang;Yoon, Tae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.818-821
    • /
    • 2006
  • We demonstrate the vertical alignment of liquid crystal on $a-SiO_x$ film surface using the ion beam exposure. Liquid crystal can be aligned vertically by the rotational oblique evaporation of $a-SiO_x$ film. However, the electro-optic switching behavior of liquid crystal along random directions results in disclination lines. We found that we can achieve highly uniform alignment of liquid crystal without disclination lines by using the ion beam exposure. We found from XRD and XPS data that the vertical alignment can be achieved when x approaches 1.5 at the $a-SiO_x$ film surface. We have shown that the pretilt angle can be controlled by changing ion beam parameters, such as the ion beam energy, the angle of incidence, and the exposure time. We found that whether liquid crystals can be aligned vertically or homogeneously on $a-SiO_x$ film can be predicted simply by measuring the change in optical transmittance by deposition of $a-SiO_x$ thin film layers. We also have shown that a liquid crystal cell aligned vertically by the ion beam exposure exhibits the voltage-transmittance curve similar to that of a rubbed polyimide cell.

  • PDF

Molecular dynamics study of redeposition effect by Ar ion bombardments on Au, Pd(001) (Ar이온 충돌에 의한 Au, Pd(001) 표면에서 재증착 효과의 분자동역학 연구)

  • Kim, S.P.;Kim, S.J.;Kim, D.Y.;Chung, Y.C.;Lee, K.R.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.81-89
    • /
    • 2008
  • Atomic behavior during ion beam sputtering was investigated by using classical molecular dynamics simulation. When Ar ion bombards on Au and Pd(001) surface with various incidence energies and angles, some atoms which gained substantial energy by impacting Ar ion were sputtered out and, simultaneously, others were landed on the surface as if surface atoms were redeposited. It was observed that the redeposited atoms are five times for Au and three times for Pd as many as sputtered atoms irrespective of both incidence energy and angle. From sequential ion bombarding calculations, contrary to the conventional concepts which have described the mechanism of surface pattern formation based only on the erosion theory, the redeposition atoms were turned out to play a significant role in forming the surface patterns.

Investigation on EO Characteristics of SiNx Thin Film Irradiated by Ion-beam (이온 빔 조사된 SiNx 박막의 전기 광학적 특성에 관한 연구)

  • Lee, Sang-Keuk;Oh, Byeong-Yun;Kim, Byoung-Yong;Han, Jin-Woo;Kim, Young-Hwan;Ok, Chul-Ho;Kim, Jong-Hwan;Han, Jeong-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.429-429
    • /
    • 2007
  • For various applications of liquid crystal displays (LCDs), the uniform alignment of liquid crystal (LC) molecules on treated surfaces is significantly important. Generally, a rubbing method has been widely used to align the LC molecules on polyimide (PI) surfaces. Rubbed PI surfaces have suitable characteristics, such as uniform alignment. However, the rubbing method has some drawbacks, such as the generation of electrostatic charges and the creation of contaminating particles. Thus, we strongly recommend a non contact alignment technique for future generations of large high-resolution LCDs. Most recently, the LC aligning capabilities achieved by ultraviolet and ion-beam exposures which are non contact methods, on diamond-like carbon (DLC) inorganic thin film layers have been successfully studied because DLC thin films have a high mechanical hardness, a high electrical resistivity, optical transparency, and chemical inertness. In addition, nitrogen-doped DLC (NDLC) thin films exhibit properties similar to those of the DLC thin films and a higher thermal stability than the DLC thin films because C:N bonding in the NDLC thin filmsis stronger against thermal stress than C:H bonding in the DLC thin films. Our research group has already studied the NDLC thin films by an ion-beam alignment method. The $SiN_x$ thin films deposited by plasma-enhanced chemical vapor deposition are widely used as an insulation layer for a thin film transistor, which has characteristics similar to those of DLC inorganic thin films. Therefore, in this paper, we report on LC alignment effects and pretilt angle generation on a $SiN_x$, thin film treated by ion-beam irradiation for various N ratios

  • PDF

Quantitative analysis of hydrogen in thin film by scattering-recoil co-measurement technique (산란-되튐 동시 측정 방법에 의한 박막 중 수소 정량법)

  • Lee, Hwa-Ryun;Eum, Chul Hun;Choi, Han-Woo;Kim, Joonkon
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.400-406
    • /
    • 2006
  • Hydrogen analysis by elastic recoil detection has been performed utilizing polyimide film as a reference sample of known hydrogen content assuming the soundness of ion beam current integration. However beam current integration at higher incidence angle is not reliable. Scattering yield per unit fluence by current integration which is normalized per unit path length decreases as the sample tilt angle is getting higher. Moreover because beam current integration at high tilt angle is incomplete, hydrogen evaluation is very risky by direct comparison of sequentially collected recoil spectra between reference and target sample. In this study, primary ion beam dose is determined by backscattering spectrum that is collected simultaneously with recoil spectrum instead of ion beam current integration in order to reduce uncertainty arising in the process of current integration and to enhance the reliability of quantitative analysis. Three test samples are selected $-7.6{\mu}m$ polyimide film, hydrogen implanted silicondioxide and Au deposited carbon wafer- and analyzed by two methods and compared.

SIMS Study on the Diffusion of Al in Si and Si QD Layer by Heat Treatment

  • Jang, Jong Shik;Kang, Hee Jae;Kim, An Soon;Baek, Hyun Jeong;Kim, Tae Woon;Hong, Songwoung;Kim, Kyung Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.188.1-188.1
    • /
    • 2014
  • Aluminum is widely used as a material for electrode on silicon based devices. Especially, aluminum films are used as backside and front-side electrodes in silicon quantum dot (QD) solar cells. In this point, the diffusion of aluminum is very important for the enhancement of power conversion efficiency by improvement of contact property. Aluminum was deposited on a Si (100) wafer and a Si QD layer by ion beam sputter system with a DC ion gun. The Si QD layer was fabricated by $1100^{\circ}C$ annealing of the $SiO_2/SiO_1$ multilayer film grown by ion beam sputtering deposition. Cs ion beam with a low energy and a grazing incidence angle was used in SIMS depth profiling analysis to obtain high depth resolution. Diffusion behavior of aluminum in the Al/Si and Al/Si QD interfaces was investigated by secondary ion mass spectrometry (SIMS) as a function of heat treatment temperature. It was found that aluminum is diffused into Si substrate at $450^{\circ}C$. In this presentation, the effect of heat treatment temperature and Si nitride diffusion barrier on the diffusion of Al will be discussed.

  • PDF

Scattering of Noble Gas Ions from a Si(100) Surface at Hyperthermal Energies (20-300 eV)

  • 이현우;Kang, H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.101-104
    • /
    • 1995
  • In an attempt to understand the nature of hyperthermal ion-surface collisions, noble gas ion beams (He+, Ne+, Ar+, and Xe+) are scattered from a Si(100) surface for collision energies of 20-300 eV and for 45°incidence angle. The scattered ions are mass-analyzed using a quadrupole mass spectrometer and their kinetic energy is measured in a time-of-flight mode. The scattering event for He+ and Ne+ can be approximated as a sequence of quasi-binary collisions with individual Si atoms for high collision energies (Ei > 100 eV), but it becomes of a many-body nature for lower energies, Ar+ and Xe+ ions undergo mutliple large impact parameter collisions with the surface atoms. The effective mass of a surface that these heavy ions experience during the collision increases drastically for low beam energies.