• Title/Summary/Keyword: Ion storage

Search Result 506, Processing Time 0.03 seconds

Ferroelectric and Magnetic Properties of Dy and Co Co-Doped $BiFeO_3 $ Ceramics

  • Yu, Yeong-Jun;Park, Jeong-Su;Lee, Ju-Yeol;Gang, Ji-Hun;Lee, Gwang-Hun;Lee, Bo-Hwa;Kim, Gi-Won;Lee, Yeong-Baek
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.260-260
    • /
    • 2013
  • Multiferroic materials have attracted much attention due to their fascinating fundamental physical properties and technological applications in magnetic/ferroelectric data-storage systems, quantum electromagnets, spintronics, and sensor devices. Among single-phase multiferroic materials, $BiFeO_3 $ is a typical multiferroic material with a room temperature magnetoelectric coupling in view of high magnetic-and ferroelectric-ordering temperatures (Neel temperature $T_N$~647 K and Curie temperature $T_C$~1,103 K). Rare-earth ion substitution at the Bi sties is very interesting, which induces suppressed volatility of Bi ion and improved ferroelectric properties. At the same time, Fe-site substitution with magnetic ions is also attracting, and the enhanced ferromagnetism was reported. In this study, $Bi_{1-x}Dy_xFe_{0.95}Co_{0.05}O_3$ (x=0, 0.05 and 0.1) bulk ceramic compounds were prepared by solid-state reaction and rapid sintering. High-purity $Bi_2O_3$, $Dy_2O_3$, $Fe_2O_3$ and $Co_3O_4$ powders with the stoichiometric proportions were mixed, and calcined at $500^{\circ}C$ or 24 h to produce $Bi_{1-x}Dy_xFe_{0.95}Co_{0.05}O_3$. The samples were immediately put into an oven, which was heated up to $800^{\circ}C$ nd sintered in air for 30 min. The crystalline structure of samples was investigated at room temperature by using a Rigaku Miniflex powder diffractometer. The field-dependent magnetization measurements were performed with a vibrating-sample magnetometer. The electric polarization was measured at room temperature by using a standard ferroelectric tester (RT66B, Radiant Technologies).

  • PDF

Development of ionic liquid based solid state electrolyte and nanocarbon composite for all solid-state energy storage device (전고체형 에너지 저장 매체 제조를 위한 이온성 액체 기반의 고체 전해질과 탄소나노복합체 기반의 전극소재 개발)

  • Kim, Yong Ryeol;Kang, Hye Ju;Jeong, Hyeon Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1253-1258
    • /
    • 2019
  • The solid-state electrolyte based on polymer is applicable to various electrochemical devices including supercapacitor, battery, sensor, actuator and has great attention to develop its ionic conductivity from conventional polymer electrolyte by uisng wide range of ionic liquids. The research about ion gel as a solid state electrolyte with the ionic liquid has focused on the wearable and flexible electronic device to use as the high electrical and electrochemical performances, mechanical strength of polymer. In this work, we have investigated and developed solid-state electrolyte based on the ionic liquid and polymer with enhanced ionic conductivity and stability.

Perfluorinated Sulfonic Acid based Composite Membranes for Vanadium Redox Flow Battery (바나듐 레독스 흐름 전지를 위한 과불소화 술폰산 복합막)

  • Cho, Kook-Jin;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • Vanadium redox flow batteries (VRFBs) using the electrolytes containing various vanadium ions in sulfuric acid as supporting solution are one of the energy storage devices in alternatively charging and discharging operation modes. The positive electrolyte contains $V^{5+}/V^{4+}$ and the negative electrolyte $V^{2+}/V^{3+}$ depending on the operation mode. To prevent the mixing of two solutions, proton exchange membranes are mainly used in VRFBs. Nafion 117 could be the most promising candidate due to the strong oxidative property of $V^{5+}$ ion, but causes high crossover of electroactive species to result in a decrease in coulombic efficiency. In this study, the composite membranes using Nafion ionomer and porous polyethylene substrate were prepared to keep good chemical stability and to decrease the cost of membranes, and were compared to the properties and performance of the commercially available electrolyte membrane, Nafion 117. As a result, the water uptake and ionic conductivity of the composite membranes increased as the thickness of the composite membranes increased, but those of Nafion 117 slightly decreased. The permeability of vanadium ions for the composite membranes significantly decreased compared to that for Nafion 117. In a single cell test for the composite membranes, the voltage efficiency decreased and the coulombic efficiency increased, finally resulting in the similar energy efficiency. In conclusion, the less cost of the composite membranes by decreasing 6.4 wt.% of the amount of perfluorinated sulfonic acid polymer due to the introduction of porous substrate and lower vanadium ion permeability to decrease self-discharge were achieved than Nafion 117.

Fabrication and characterization of ZrxCe1-xO2 catalytic powder by a hydrothermal process (수열합성공정에 의한 ZrxCe1-xO2 촉매 분말의 제조 및 특성)

  • Choi, Yeon-Bin;Son, Jeong-hun;Sohn, Jeong Ho;Bae, Dong-Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.309-312
    • /
    • 2017
  • The ceria powder is excellent in oxygen storage capacity (OSC) through the oxidation and reduction reaction of Ce ions and is used as a typical material for a three-way catalyst of an automobile which purifies the exhaust gas. However, since ceria generally has poor thermal stability at high temperatures, it is doped with metal ions to improve thermal stability. Therefore, in this study, Zr ions were doped into ceria powder, and their characteristics were further improved due to the increase of specific surface area with decreasing particle size due to doping. In this study, the synthesis of zirconium doped ceria nanopowder was synthesized by hydrothermal process. In order to synthesis Zr ion doped ceria nanopowder, the precursor reaction at was $200^{\circ}C$ for 6 hours. The average particle size of synthesized Zr doped $CeO_2$ nanopowder was below 20 nm. The specific surface area of synthesized Zr ion doped ceria nanopowder increased from $52.03m^2/g$ to $132.27m^2/g$ with Zr increased 30 %.

Electrochemical Properties of Lithium Secondary Battery and the Synthesis of Spherical Li4Ti5O12 Powder by Using TiCl4 As a Starting Material (TiCl4를 출발원료로한 구형 Li4Ti5O12 분말합성 및 리튬이차 전지특성)

  • Choi, Byung-Hyun;Ji, Mi-Jung;Kwon, Yong-Jin;Kim, Eun-Kyung;Nahm, Sahn
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.669-675
    • /
    • 2010
  • One of the greatest challenges for our society is providing powerful electrochemical energy conversion and storage devices. Rechargeable lithium-ion batteries and fuel cells are among the most promising candidates in terms of energy and power density. As the starting material, $TiCl_4{\cdot}YCl_3$ solution and dispersing agent (HCP) were mixed and synthesized using ammonia as the precipitation agent, in order to prepare the nano size Y doped spherical $TiO_2$ precursor. Then, the $Li_4Ti_5O_{12}$ was synthesized using solid state reaction method through the stoichiometric mixture of Y doped spherical $TiO_2$ precursor and LiOH. The Ti mole increased the concentration of the spherical particle size due to the addition of HPC with a similar particle size distribution in a well in which $Li_4Ti_5O_{12}$ spherical particles could be obtained. The optimal synthesis conditions and the molar ratio of the Ti 0.05 mol reaction at $50^{\circ}C$ for 30 minutes and at $850^{\circ}C$ for 6 hours heat treatment time were optimized. $Li_4Ti_5O_{12}$ was prepared by the above conditions as a working electrode after generating the Coin cell; then, electrochemical properties were evaluated when the voltage range of 1.5V was flat, the initial capacity was 141 mAh/g, and cycle retention rate was 86%; also, redox reactions between 1.5 and 1.7V, which arose from the insertion and deintercalation of 0.005 mole of Y doping is not a case of doping because the C-rate characteristics were significantly better.

Effect of Containing Promoter on SCR Catalysts (SCR 촉매에 포함된 조촉매 영향)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.474-481
    • /
    • 2018
  • The policy-making and technological development of eco-friendly automobiles designed to increase their supply is ongoing, but the internal combustion engine still accounts for approximately 95% of automobiles in use. To meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is increasing continuously. As diesel engines have high power and good fuel economy in addition to less CO2 emissions, their market share is increasing not only in commercial vehicles, but also in passenger cars. Because of the characteristics of the diesel combustion, however, NOx is generated in localized high-temperature combustion regions, and particulates are formed in the zones of diffusion combustion. LNT and urea-SCR catalysts have been developed for the after-treatment of exhaust gas to reduce NOx in diesel vehicles. This study examined the effect of a containing promoter on SCR catalysts to cope with the severe exhaust gas regulation. The de-NOx performance of the Mn-SCR catalyst was the best, and the de-NOx performance was improved as the ion exchange rate between Mn ion and Zeolyst was good and the activation energy was low. The de-NOx performance of the 7Cu-15Ba/78Zeoyst catalyst was 32% at $200^{\circ}C$ and 30% at $500^{\circ}C$, and showed the highest performance. The NOx storage material of BaO loaded as a promoter was well dispersed in the Cu-SCR catalyst and the additional de-NOx performance of BaO was affected by the reduction reaction of the Cu-SCR catalyst. Among the three catalysts, the 7Cu-15Ba/Zeolyst SCR catalyst was resistant to thermal degradation. The same type of CuO due to thermal degradation migrates and agglomerates because BaO reduces the agglomeration of the main catalyst CuO particles.

Current Status of processing and Research Trends in Ginseng Products (인삼제품의 가공현황과 연구 동향)

  • 양재원
    • Journal of Ginseng Research
    • /
    • v.20 no.4
    • /
    • pp.501-519
    • /
    • 1996
  • There are two kinds of commercially available ginseng root, red ginseng and white ginseng processed from fresh ginseng root Those ginsengs are primary product from fresh ginseng root and have the characteristic of keeping their original root shape Processed ginseng products are made from either red ginseng or white ginseng by way of complicated process of pulverization. Extraction. Condensation, fettering, sterilization, etc. Among them there are extracts. extract powder, powder, capsules tablets, Candy, drinks, nectar, jelly, gums. chicken soup. tonic. etc. to meet the demand for consumer's pretheronce . The 200 kinds of processed secondary products are approximately produced in the form of 20 kinds of ginseng products by about 60 domestic companies. In spite of about 213.000 million won of domestic market in 1993. it seems like that the ginseng market of the future has not a good prospects The total market sale of white ginseng in Korea has been continuously decreased since 1991 And 963 tons of white ginseng was consumed in domestic market in 1993 The domestic market sales of white ginseng in origina1 root shave. was 90, 000 million won in 1993 and market price of the fine root used as a source of processed products has not been changed in these ten years. The total market sale of red ginseng and its processed products was 58, 000 million won in 1993 9.800 mi11ion won of red ginseng in original root shape and 48.000mi11ion of processed red ginseng product. Ginseng products such as extracts, drinks, teas and tonics etc atre mostly exported to south-east Asia. And the total exports of ginseng pi.oducts (extracts, drinks teas) decreased to 54 million dollars in 1994, compared with 85 million dollars in 1992. Despite of extensive knowledge about ginseng little is still known about the development of new processed ginseng pl.oducts because of "Know-How". Some papars have presented the effects of extracting method(amounts of solvent. time. temperature, equipment. etc.) on the quality and yields of ginseng extr acts. Also. some researchers have carried out a few studies on the poriflcation of the extracts and the amounts of precipitation in the drink at variotas pH during the storage for preventinly drink from precipitation. A fell studies on the preservation of Korean ginseng powder. tea. Extract powder by irradiation and ozone treatment have been reported by some researcher for the improvement hygienic quality of ginseng products There are also some reports about the effects of ginseng components on the acid production by lactic acid bacteria or acetic acid bacteria. and alcohol production by yeast for the development of new ginseng products processed by fermentation. To make ginseng more able to contribute to the health of mankind in the future. consistent and considerable efforts should be focussed on improving the taste of ginseng and developing various new product as a health food or a function food.tion food.

  • PDF

Electrochemical Characteristics of Ru Added Li4Ti5O12 as an Anode Material (Ru를 첨가한 음극활물질 Li4Ti5O12의 전기화학적 특성)

  • Cho, Woo-Ram;Na, Byung-Ki
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.433-438
    • /
    • 2014
  • There is an increasing interest in the development of rechargeable batteries suitable for use in both hybrid electric vehicles and energy storage systems that require higher charge & discharge rates, bigger battery sizes and increased safety of the batteries. Spinel-type lithium titanium oxide ($Li_4Ti_5O_{12}$) as a potential anode for lithium ion batteries has many advantages. It is a zero-strain materials and it experiences no structural change during the charge/discharge precess. Thus, it has long cycle life due to its structural integrity. It also offers a stable operation voltage of approximately 1.55 V versus $Li^+/Li$, above the reduction potential of most organic electrolyte. In this study, Ru added $Li_4Ti_5O_{12}$ composites were synthesized by solid state process. The characteristics of active material were investigated with TGA-DTA, XRD, SEM and charge/discharge test. The capacity was reduced when Ru was added, however, the polarization decreased. The capacity rate of $Li_4Ti_5O_{12}$ with Ru (3%, 4%) addition was reduced during the charge/discharge precess with 10 C-rate as a high current density.

Study on Electrochemical Performances of PEO-based Composite Electrolyte by Contents of Oxide Solid Electrolyte (산화물계 고체전해질 함량에 따른 PEO 기반 복합전해질 전기화학 성능 연구)

  • Lee, Myeong Ju;Kim, Ju Young;Oh, Jimin;Kim, Ju Mi;Kim, Kwang Man;Lee, Young-Gi;Shin, Dong Ok
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.4
    • /
    • pp.80-87
    • /
    • 2018
  • Safety issues in Li-ion battery system have been prime concerns, as demands for power supply device applicable to wearable device, electrical vehicles and energy storage system have increased. To solve safety problems, promising strategy is to replace organic liquid electrolyte with non-flammable solid electrolyte, leading to the development of all-solid-state battery. However, relative low conductivity and high resistance from rigid solid-solid interface hinder a wide application of solid electrolyte. Composite electrolytes composed of organic and inorganic parts could be alternative solution, which in turn bring about the increase of conductivity and conformal contact at physically rough interfaces. In our study, composite electrolytes were prepared by combining poly(ethylene oxide)(PEO) and $Li_7La_3Zr_2O_{12}$ (LLZO). The crystallinity, morphology and electrochemical performances were investigated with the control of LLZO contents from 0 wt% to 50 wt%. From the results, it is concluded that optimum content and uniform dispersion of LLZO in polymer matrix are significant to improve overall conductivity of composite electrolyte.

Reinforced Anion-exchange Membranes Employing Porous PTFE Support for All-vanadium Redox Flow Battery Application (전 바나듐 레독스 흐름전지 응용을 위한 다공성 PTFE 지지체를 사용한 강화 음이온교환막)

  • Moon, Ha-Nuel;Song, Hyeon-Bee;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.351-362
    • /
    • 2021
  • All-vanadium redox flow battery (VRFB) is one of the promising high-capacity energy storage technologies. The ion-exchange membrane (IEM) is a key component influencing the charge-discharge performance and durability of VRFB. In this study, a pore-filled anion-exchange membrane (PFAEM) was fabricated by filling the pores of porous polytetrafluoroethylene (PTFE) support with excellent physical and chemical stability to compensate for the shortcomings of the existing hydrocarbon-based IEMs. The use of a thin porous PTFE support significantly lowered the electrical resistance, and the use of the PTFE support and the introduction of a fluorine moiety into the filling ionomer significantly improved the oxidation stability of the membrane. As a result of the evaluation of the charge-discharge performance, the higher the current efficiency was seen by increasing the fluorine content in the PFAEM, and the superior voltage and energy efficiencies were shown owing to the lower electrical resistance compared to the commercial membrane. In addition, it was confirmed that the use of a hydrophobic PTFE support is more preferable in terms of oxidation stability and charge-discharge performance.