• Title/Summary/Keyword: Ion selective membrane

Search Result 204, Processing Time 0.029 seconds

Fabrication of Hydrogel and Gas Permeable Membranes for FET Type Dissolved $CO_{2}$ Sensor by Photolithographic Method (사진식각법을 이용한 FET형 용존 $CO_{2}$ 센서의 수화젤막 및 가스 투과막 제작)

  • Park, Lee-Soon;Kim, Sang-Tae;Koh, Kwang-Nak
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.207-213
    • /
    • 1997
  • A field effect transistor(FET) type dissolved carbon dioxide($pCO_{2}$) sensor with a double layer structure of hydrogel membrane and $CO_{2}$ gas permeable membrane was fabricated by utilizing a $H^{+}$ ion selective field effect transistor(pH-ISFET) with Ag/AgCl reference electrode as a base chip. Formation of hydrogel membrane with photo-crosslinkable PVA-SbQ or PVP-PVAc/photosensitizer system was not suitable with the photolithographic process. Furthermore, hydrogel membrane on pH-ISFET base chip could be fabricated by photolithographic method with the aid of N,N,N',N'-tetramethyl othylenediarnine(TED) as $O_{2}$ quencher without using polyester film as a $O_{2}$ blanket during UV irradiation process. Photosensitive urethane acrylate type oligomer was used as gas permeable membrane on top of hydrogel layer. The FET type $pCO_{2}$ sensor fabricated by photolithographic method showed good linearity (linear calibration curve) in the range of $10^{-3}{\sim}10^{0}\;mol/{\ell}$ of dissolved $CO_{2}$ in aqueous solution with high sensitivity.

  • PDF

Preparation of Storage-Stable Liquid Dyes by Membrane Separation Technology (막분리 기술을 위한 액체염료 제조에 관한 연구)

  • Cho, Jung Hee;Lee, Chung Hak
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.349-359
    • /
    • 1992
  • Studies were carried out on the selective removal of inorganic salts such as NaCl and $Na_2SO_4$ from dye solution, using counter diffusion-reverse osmosis and nanofiltration, respectivey. For the dye solution used in the experiments, 1 to 30% of salts were removed by counter diffusion while the loss of dye molecules was less than 0.3%. The separation factors by one pass operation were 10-500 according to ionic species. In five successive operations, removals of anion($Cl^-$) increased but those of cation($Na^+$) decreased due to the Donnan effect. Effects of feed flow rate on removal efficiencies of various ions were also observed at constant flow rate of stripping water. Reverse osmosis of desalted dye solution by counter diffusion was conducted to prepare highly concentrated liquid dyes. The rejection efficiency of dye molecules was greater than 99%. For the rejection efficiency of chloride ion, experimental values were compared with theoretical ones based on solution-diffusion model. Two stage diafiltration was performed in nanofiltration. The rejection efficiency of chloride ion was continuously decreased due to the Donnan dialysis and even negative rejection was observed. The Donnan effect was more pronounced in the second diafiltration.

  • PDF

Real-time Nutrient Monitoring of Hydroponic Solutions Using an Ion-selective Electrode-based Embedded System (ISE 기반의 임베디드 시스템을 이용한 실시간 수경재배 양액 모니터링)

  • Han, Hee-Jo;Kim, Hak-Jin;Jung, Dae-Hyun;Cho, Woo-Jae;Cho, Yeong-Yeol;Lee, Gong-In
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.141-152
    • /
    • 2020
  • The rapid on-site measurement of hydroponic nutrients allows for the more efficient use of crop fertilizers. This paper reports on the development of an embedded on-site system consisting of multiple ion-selective electrodes (ISEs) for the real-time measurement of the concentrations of macronutrients in hydroponic solutions. The system included a combination of PVC ISEs for the detection of NO3, K, and Ca ions, a cobalt-electrode for the detection of H2PO4, a double-junction reference electrode, a solution container, and a sampling system consisting of pumps and valves. An Arduino Due board was used to collect data and to control the volume of the sample. Prior to the measurement of each sample, a two-point normalization method was employed to adjust the sensitivity followed by an offset to minimize potential drift that might occur during continuous measurement. The predictive capabilities of the NO3 and K ISEs based on PVC membranes were satisfactory, producing results that were in close agreement with the results of standard analyzers (R2 = 0.99). Though the Ca ISE fabricated with Ca ionophore II underestimated the Ca concentration by an average of 55%, the strong linear relationship (R2 > 0.84) makes it possible for the embedded system to be used in hydroponic NO3, K, and Ca sensing. The cobalt-rod-based phosphate electrodes exhibited a relatively high error of 24.7±9.26% in the phosphate concentration range of 45 to 155 mg/L compared to standard methods due to inconsistent signal readings between replicates, illustrating the need for further research on the signal conditioning of cobalt electrodes to improve their predictive ability in hydroponic P sensing.

Properties of stretch-activated $K^+$ channels in an G292 osteoblast-like cell (G292 세포에서 세포막 신장으로 활성화되는 $K^+$통로의 특성)

  • Lee, Sang-Gook;Jung, Dong-Keun;Suh, Duk-Joon;Park, Soo-Byung
    • The korean journal of orthodontics
    • /
    • v.30 no.2 s.79
    • /
    • pp.197-204
    • /
    • 2000
  • [$K^+$]-selective ion channels were studied in excised inside-out membrane patches from human osteoblast-like cells (G292). Three classes of $K^+$channels were present and could be distinguished on the basis of conductance. Conductances were $270\pm27\;pS,\;113\pm12\;pS,\;48\pm8\;pS$ according to their approximate conductances in symmetrical 140 mM KCl saline at holding potential of -80 mV It was found that the small conductance (48 pS) $K^+$channel activation was dependent on membrane voltage. In current-voltage relationship, small conductance $K^+$channel showed outward rectification, and it was activated by the positive potential inside the membrane. In recordings, single channel currents were activayed by a negative pressure outside the membrane. The membrane pressure increased $P_{open}$ of the $K^+$ channel in a pressure-dependent manner. In the excised-patch clamp recordings, G292 osteoblast-like cells have been shown to contain three types of $K^+$ channels. Only the small conductance (48 pS) $K^+$channel is sensitive to the membrane stretch. These findings suggest that a hyperpolarizing current, mediated in part by this channel, may be associated with early events during the mechanical loading of the osteoblast. In G292 osteoblast-like cells, $K^+$channel is sensitive to membrane tension, and may represent a unique adaptation of the bone cell membrane to mechanical stress.

  • PDF

Separation Technologies for the Removal of Nitrate-Nitrogen from Aqueous Solution (수용액으로부터 질산성질소 제거를 위한 기술)

  • Seo, Yang Gon;Jung, Se Yeong
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • At high nitrate concentrations, water must be treated to meet regulated concentrations because it results in threat to human health and eutrophication of natural water. However, it is almost impossible to remove nitrate by conventional water treatment methods such as coagulation, filtration and precipitation, due to its high water solubility. Therefore, other technologies including adsorption, ion exchange, reverse osmosis, denitrification, and electrodialysis are required to effectively remove nitrate. Each of these technologies has their own strengths and drawbacks and their feasibility is weighted against factors such as cost, water quality improvement, residuals handling, and pre-treatment requirements. An adsorption technique is the most popular and common process because of its cost effectiveness, ease of operation, and simplicity of design. Surface modifications of adsorbents have been enhanced their adsorption of nitrate. The nitrate-selective membrane process of electrodialysis reversal and reverse osmosis have proven over time and at many locations to be highly effective in removing nitrate contaminating problems in aqueous solutions. Both electrodiaysis and reverse osmosis methods generate highly concentrated wastes and need careful consideration with respect to disposal.

4-Aminopyridine Inhibits the Large-conductance $Ca^{2+}-activated$ $K^+$ Channel $(BK_{Ca})$ Currents in Rabbit Pulmonary Arterial Smooth Muscle Cells

  • Bae, Young-Min;Kim, Ae-Ran;Kim, Bo-Kyung;Cho, Sung-Il;Kim, Jung-Hwan;Earm, Yung-E
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.25-28
    • /
    • 2003
  • Ion channel inhibitors are widely used for pharmacological discrimination between the different channel types as well as for determination of their functional role. In the present study, we tested the hypothesis that 4-aminopyridine (4-AP) could affect the large conductance $Ca^{2+}$-activated $K^+$ channel ($BK_{Ca}$) currents using perforated-patch or cell-attached configuration of patch-clamp technique in the rabbit pulmonary arterial smooth muscle. Application of 4-AP reversibly inhibited the spontaneous transient outward currents (STOCs). The reversal potential and the sensitivity to charybdotoxin indicated that the STOCs were due to the activation of $BK_{Ca}$. The $BK_{Ca}$ currents were recorded in single channel resolution under the cell-attached mode of patch-clamp technique for minimal perturbation of intracellular environment. Application of 4-AP also inhibited the single $BK_{Ca}$ currents reversibly and dose-dependently. The membrane potential of rabbit pulmonary arterial smooth muscle cells showed spontaneous transient hyperpolarizations (STHPs), presumably due to the STOC activities, which was also inhibited by 4-AP. These results suggest that 4-AP can inhibit $BK_{Ca}$ currentsin the intact rabbit vascular smooth muscle. The use of 4-AP as a selective voltage-dependent $K^+$ (KV) channel blocker in vascular smooth muscle, therefore, must be reevaluated.

Continuous Automated Determination of Urea Using a New Enzyme Reactor (새로운 효소반응기를 이용한 요소의 연속·자동화 정량)

  • Heung Lark Lee;Seung Tae Yang
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.3
    • /
    • pp.393-404
    • /
    • 1992
  • The response properties of continuous automated system using an enzyme reactor for determination of urea were investigated. The enzyme reactor was constructed to packed-bed form which filled with nylon-6 beads (42∼48 mesh), which immobilized urease with glutaraldehyde, in teflon tube (2 mm I.D., 20 cm length). The system was composed of the enzyme reactor, gas dialyzer, and tublar PVC-nonactin membrane ammonium ion-selective electrode as an indicator electrode in serial order. The response characteristics of this system were as follows. That is, the concentration range of linear response, slope of linear response, detection limit, and conversion percentage were $5.5{\times}10^{-6}$$2.4{\times}10^{-3}M$, 57.8 mV/decade, $1.5{\times}10^{-6}$, and 80.8%, respectively. The optimum buffer and life time of urease reactor were 0.01M Tris-HCl buffer solution (pH 7.0∼7.8) and 0.01M phosphate buffer solution (pH 6.9∼7.5) and about 150 days, respectively. And the urease reactor had no interferences of the other physiological materials.

  • PDF

Development of Chemical Separation Process for Thallium-201 Radioisotope with Lead Standard Material (납 표준물질을 이용한 방사성동위원소 Thallium-201의 화학적 분리공정 개발)

  • JunYoung Lee;TaeHyun Kim;JeongHoon Park
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.543-549
    • /
    • 2023
  • Thallium-201 (201Tl) is a medical radioisotope which emits gamma rays when it decays and used in myocardial perfusion scans in single-photon emission tomography due to its similar properties to potassium. Currently, the Korea Institute of Radiological & Medical Sciences is the only institution producing 201Tl in Korea, and optimization of 201Tl production research is necessary to meet supply compared to domestic demand. To this end, technical analysis of plating target production and chemical separation methods essential for 201Tl production research is conducted. It deals with the process of generating and separating 201Tl radioisotope and target production, It can be generated through a nuclear reaction such as natHg(p,xn)201Tl, 201Hg(p,n)201Tl, natPb(p,xn)201Bi → 201Pb → 201Tl, 205Tl(p,5n)201Pb → 201Tl, and considering impure nuclide generated simultaneously with the use of proton beam energy of 35 MeV or less, it is intended to be produced using the 203Tl(p,3n)201Pb→201Tl nuclear reaction. In particular, the chemical separation of Tl is a very important element, and the chemical separation methods that can separate it is broadly divided into four types, including solid phase extraction, liquid-liquid, electrochemical, and ion exchange membrane separation. Some chemical separations require additional separation steps, such as methods using selective adsorption. Therefore, this technical report describes four chemical separation methods and seeks to separate high-purity 201Tl using a method without additional separation steps

Desalination of Tuna Boiled Extract by Electrodialysis (전기투석에 의한 참치 자숙액의 탈염특성)

  • KIM Se-kwon;BYUN Hee-Guk;JEON You-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.1
    • /
    • pp.68-74
    • /
    • 1999
  • The optimum conditions for selective .elimination of salt from tuna boiled extract (TBE) by electrodialysis were determined. The desalination conditions of TBE were determined at various pH's, concentrations and volumes of TBE. The ion-exchange membrane with a molecular weight cut off 100Da was used for desalting of TBE. The desalination times on $1\%$ and $10\%$ of TBE concentrations were 40 min and 240 min, respectively. The electrodialysis process could removed above $95\%$ of the initial salt content in $1\%$ and $10\%$ of TBE concentrations. The desalination of TBE at pH 4.0 was $14\%$ higher than that at pH 9.0 The amount of water transferred by the electrodialysis was determined. The electrodialysis process could remove above $90\%$ of the initial salt content in $5\%$ TBE for 80 min. The initial volume and the permeate did not have significant effects on desalination time and ratio. The key parameters for the desalination of TBE were pH and concentration of TBA.

  • PDF

Effects of ${\alpha}_1-Adrenergic$ Stimulation on Membrane Potential, Twitch Force, Intracellular $Na^+,\;and\;H^+$ Activity in Hyperthyroid Guinea Pig Ventricular Muscle (갑상선 기능 항진 기니픽 심근에서 ${\alpha}_1-Adrenergic$ 수용체 자극이 막전위, 수축력 및 세포내 $Na^+$$H^+$ 활성도에 미치는 영향)

  • Kim Jin-Sang;Chae Soo-Wan;Cho Kyu-Park
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.1 s.57
    • /
    • pp.39-51
    • /
    • 1995
  • The roles of ${\beta}-adrenoceptor$ were well known in hyperthyroidal heart, but not with ${\alpha}-adrenoceptor$. So we studied the effects of phenylephrine on membrane potential, intracellular sodium activity ($a^{i}_{Na}$), twitch force, and intracellular pH ($pH_i$) by continuous intracellular recordings with ion-selective and conventional microelectrodes in the papillary muscles of hyperthyroid guinea pig heart. ${\alpha}_1-adrenoceptor$ stimulation by phenylephrine (10^{-5}\;or\;3{\times}10^{-5}M$) produced the following changes: variable changes in action potential duration, a hyperpolarization ($1.5{\pm}0.1mM$) of the diastolic membrane potential, an increase in $a^{i}_{Na}\;(0.4{\pm}0.15mM)$, a stronger positive inotropic effect ($220{\pm}15%$), an increase in $pH_i\;(0.06{\pm}0.002\;unit)$. These changes were flocked by prazosin and atenolol. This indicated that the changes in membrane potential, $a^{i}_{Na}$ twitch force, and $pH_i$ are mediated by a stimulation of the ${\alpha}_1-adrenoceptor$. Ethylisopropylamiloride ($10^{-5}$) also blocked the increase in $a^{i}_{Na}$ and twitch force. On the other hand, strophanthidin, tetrodotoxin, $Cs^+$ or verapamil did not block the increase in $a^{i}_{Na}$ and twitch force. Thus, it was suggested that ${\alpha}_1-adrenoceptor$ stimulation increased $a^{i}_{Na}\;and\;pH_i$ by stimulation of $Na^{+}-H^{+}$ exchange, thereby allowing intracellular alkalinization and $a^{i}_{Na}$ increase. These results were very different from euthyroidal heart which showed ${\alpha}_1-adrenoceptor$-induced decrease in $a^{i}_{Na}$ and initial negative inotropic effect. From the above results, it was concluded that ${\alpha}_1-adrenoceptor$ had a important role in hyperthy-roidal heart.

  • PDF