• 제목/요약/키워드: Ion recombination

검색결과 54건 처리시간 0.018초

High-Dose-Rate Electron-Beam Dosimetry Using an Advanced Markus Chamber with Improved Ion-Recombination Corrections

  • Jeong, Dong Hyeok;Lee, Manwoo;Lim, Heuijin;Kang, Sang Koo;Jang, Kyoung Won
    • 한국의학물리학회지:의학물리
    • /
    • 제31권4호
    • /
    • pp.145-152
    • /
    • 2020
  • Purpose: In ionization-chamber dosimetry for high-dose-rate electron beams-above 20 mGy/pulse-the ion-recombination correction methods recommended by the International Atomic Energy Agency (IAEA) and the American Association of Physicists in Medicine (AAPM) are not appropriate, because they overestimate the correction factor. In this study, we suggest a practical ion-recombination correction method, based on Boag's improved model, and apply it to reference dosimetry for electron beams of about 100 mGy/pulse generated from an electron linear accelerator (LINAC). Methods: This study employed a theoretical model of the ion-collection efficiency developed by Boag and physical parameters used by Laitano et al. We recalculated the ion-recombination correction factors using two-voltage analysis and obtained an empirical fitting formula to represent the results. Next, we compared the calculated correction factors with published results for the same calculation conditions. Additionally, we performed dosimetry for electron beams from a 6 MeV electron LINAC using an Advanced Markus® ionization chamber to determine the reference dose in water at the source-to-surface distance (SSD)=100 cm, using the correction factors obtained in this study. Results: The values of the correction factors obtained in this work are in good agreement with the published data. The measured dose-per-pulse for electron beams at the depth of maximum dose for SSD=100 cm was 115 mGy/pulse, with a standard uncertainty of 2.4%. In contrast, the ks values determined using the IAEA and AAPM methods are, respectively, 8.9% and 8.2% higher than our results. Conclusions: The new method based on Boag's improved model provides a practical method of determining the ion-recombination correction factors for high dose-per-pulse radiation beams up to about 120 mGy/pulse. This method can be applied to electron beams with even higher dose-per-pulse, subject to independent verification.

백금족 전력 계면에서 전기화학적 Impulse 발진 (Electrochemical Impulse Oscillations at the Platinum Group Electrode Interfaces)

  • 전장호;손광철;라극환
    • 전자공학회논문지A
    • /
    • 제32A권3호
    • /
    • pp.143-151
    • /
    • 1995
  • The electrochemical impulse oscillations of the cathodic currents at the platinum group (Pt, Pd) electrode/(0.05M KHC$_{8}H_{4}O_{4}$) buffer solution interfaces have been studied using voltammetric, chronoamperometric, and electrochemical impedance methods. The periodic impulses of the cathodic currents are the activation controlled currents due to the hydrogen evolution reaction, and depend on the fractional surface coverage of the adsorbed hydrogen intermediate and potential. The oscillatory mechanism of the cathodic current impulses is connected with the unstable steady state of negative differential resistance. The widths and periods of the cathodic current impulses are 4ms or 5ms and 152.5ms or 305ms, respectively. The H$^{+}$ discharge reaction step is 38 or 61 times faster thatn the recombination reaction steps and the H$^{+}$ mass transport processes. The atom-atom recombination reaction step is twice faster thatn the atom-ion recombination reaction step. The two kinds of active sites corresponding to the atom-atom and atom-ion recombination reaction steps exist on the platinum group electrode surfaces.

  • PDF

POLARITY AND ION RECOMBINATION CORRECTION FACTORS OF A THIMBLE TYPE IONIZATION CHAMBER WITH DEPTH IN WATER IN THE MEGAVOLTAGE BEAMS

  • Kim, Seong-Hoon;Huh, Hyun-Do;Choi, Sang-Hyun;Min, Chul-Hee;Shin, Dong-Oh;Choi, Jin-Ho
    • Journal of Radiation Protection and Research
    • /
    • 제34권2호
    • /
    • pp.43-48
    • /
    • 2009
  • When the PDD (percentage depth dose) in the megavoltage beams is measured in the water phantom, the polarity and ion recombination effects of ionization chambers with depth in water are not usually taken into consideration. We try to investigate if those variations with depth should be taken into consideration or could be ignored for the thimble type semiflex ionization chamber (PTW $31010^{TM}$, SN 1551). According to the recommendation of IAEA TRS-398, the 4 representative depths of $d_s$, $d_{max}$, $d_{90}$ and $d_{50}$ were used for the electron beams. For the photon beams, the 4 depths were arbitrarily chosen for the photon beams, which were $d_s$, $d_{max}$, $d_{10}$ and $d_{20}$. For the high energy photon beam both polarity and ion recombination factors of the chamber with depth in water gives the good agreements within the maximum $\pm$0.2%, while the $C_{polS}$ with depth came within the maximum $\pm$ 0.4% and the $C_{IRS}$ within the maximum $\pm$0.6% in every electron beam used. This study shows that PDI (percentage depth ionization) could be a good approximation to PDD for the chamber used.

이온 주입 시의 점결함 발생과 재결합에 관한 3차원 몬테 카를로 모델링 및 시뮬레이션 (Three-dimensional monte carlo modeling and simulation of point defect generation and recombination during ion implantation)

  • 손명식;황호정
    • 전자공학회논문지D
    • /
    • 제34D권5호
    • /
    • pp.32-44
    • /
    • 1997
  • A three-dimensional (3D) full-dynamic damage model for ion implantation in crystalline silicon was proposed to calculate more accurately point defect distributions and ion-implanted concentration profiles during ion implantation process. The developed model was based on the physical monte carlo approach. This model was applied to simulate B and BF2 implantation. We compared our results for damage distributions with those of the analytical kinchin-pease approach. In our result, the point defect distributions obtained by our new model are less than those of kinchin-pease approach, and the vacancy distributions differ from the interstitial distributions. The vacancy concentrations are higher than the interstitial ones before 0.8 . Rp to the silicon surface, and after the 0.8 . Rp to the silicon bulk, the interstitial concentrations are revesrsely higher than the vacancy ones.The fully-dynamic damage model for the accumulative damage during ion implantation follows all of the trajectories of both ions and recoiled silicons and, concurrently, the cumulative damage effect on the ions and the recoiled silicons are considered dynamically by introducing the distributon probability of the point defect. In addition, the self-annealing effect of the vacancy-interstitial recombination during ion implantation at room temperature is considered, which resulted in the saturation level for the damage distribution.

  • PDF

Si 태양전지(太陽電池)의 표면재결합(表面再結合) 전류(電流)가 포화전류(飽和電流)에 미치는 영향(影響) (The Effect of Surface Recombination Current on the Saturation Current in Si Solar Cell)

  • 신기식;이기선;최병호
    • 태양에너지
    • /
    • 제8권2호
    • /
    • pp.12-18
    • /
    • 1988
  • The effect of surface recombination current density on the saturation current density in Si solar cell has been studied. Theoretical model for surface recombination current was set up from emitter transparent model of M.A. Shibib, and saturation current of Si solar cell made by ion implantation method was also measured by digital electrometer. The theoretical surface recombination current density which is the same as saturation surface recombination current density in Shibib model was $10^{-11}[A/cm^2]$ and the measured value was ranged from $8{\times}10^{-10}$ to $2{\times}10^{-9}[A/cm^2]$. Comparing with the ideal p-n junction of Shockley, transparent emitter model shows improved result by $10^2$ order of saturation current density. But there still exists $10^2$ order of difference of saturation current density between theoretical and actual values, which are assumed to be caused by 1) leakage current through solar cell edge, 2) recombination of carriers in the depletion layer, 3) the series resistance effect and 4) the tunneling of carriers between states in the band gap.

  • PDF

Dissociative Recombination Rates of O₂+ Ion with Low Energy Electrons

  • 성정희;선호성
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권11호
    • /
    • pp.1065-1073
    • /
    • 1996
  • The dissociative recombination of O2+(v+)+e-→O(1S)+O(1D) has been theoretically investigated using the multichannel quantum defect theory (MQDT). Cross sections and rate coefficients at various electron energies are calculated. The resonant structures in cross section profile, which are hardly measurable in experiments, are also determined and the existence of Rydberg states is found to affect the rates. The theoretical rate coefficients are computed to be smaller than experimental ones. The reasons for this difference are explained. The two-step MQDT procedure is found to be very useful and promising in calculating the state-to-state rates of the dissociative recombination reaction which is a very important and frequently found phenomenon in Earth's ionosphere.

Co-60 빔에서 액체 전리함의 이온 수집 효율 결정 연구 (Determining Ion Collection Efficiency in a Liquid Ionization Chamber in Co-60 Beam)

  • 최상현;김찬형
    • 한국의학물리학회지:의학물리
    • /
    • 제25권1호
    • /
    • pp.46-52
    • /
    • 2014
  • 액체 전리함은 공동 전리함과 달리 감응매질이 물 등가물질로 이루어져 있어서, 감도가 매우 높아서 충분히 작게 만들 수 있기 때문에 기준 조사면 뿐만 아니라 소조사면의 선량 평가에 유용하다는 장점이 있지만, 이온 재결합 손실 계산에 있어 초기 재결합과 일반 재결합을 모두 고려해야 하므로, 사용상에 어려움이 따른다. 본 연구에서는 연속 빔인 코발트 60 빔에서 PTW사의 microLion 액체 전리함을 이용하여 Greening 이론식과 이선량률법 및 다른 실험을 이용하여 수집효율을 구하고, 비교하는 연구를 수행하였다. 이는 코발트 장비인 Theratron 780과 물팬톰을 이용하여 수행하였으며, 선량률에 따른 microLion 전리함의 전하량을 측정하기 위해 0.6 cc 공동 전리함을 같은 조건에서 동시에 측정하였다. 이때 선량률의 범위는 0.125~0.746 Gy/min이였으며, 각 선량률에서 +400, +600 및 +800 전압에 대하여 액체 전리함을 이용하여 전하량을 측정하였다. 측정된 데이터를 이용하여 세 가지 방법에 따라 계산된 수집효율은 대체로 1% 이내로 일치하였다. 특히 본 연구에서 실험을 통해 구한 수집효율은 가장 낮은 두 선량률을 제외하고는 0.3% 이내로 잘 일치함을 보였다. 이선량률법의 경우 Greening 이론식과 비교하여 대체로 1% 이내의 차이를 보였지만, 두 선량률의 차이가 적을 때 대략 4% 가까운 차이를 보임을 확인하였다. TRS-398 물흡수선량 프로토콜에서 권고하는 표면과 선원간의 거리가 80 cm이고, 깊이 5 cm에서 Greening 이론법과 이선량률법, 본 연구에서 실험을 통해 얻은 방법에 의한 이온 재결합 보정계수는 각각 1.0233, 1.0239, 1.0316으로, 이 조건에서 대략 3%의 이온 재결합에 의한 손실이 발생함을 확인하였다. 본 연구에서 실험을 통해 이온 재결합 손실을 계산하는 방법은 다른 두 선량률에서 액체 전리함의 보정된 전하량을 이용하여 손쉽게 결정할 수 있기 때문에 연속 빔에서 선량 평가 시에 매우 유용하게 사용될 수 있으리라 판단된다.

조직 표면에서의 베타선 흡수선량 측정 (Measurement of Absorbed Dose at the Tissue Surface from a Plain $^{90}Sr+^{90}Y$ Beta Sources)

  • 하석호;김정묵;육종철
    • Journal of Radiation Protection and Research
    • /
    • 제16권2호
    • /
    • pp.17-26
    • /
    • 1991
  • 외삽형 전리함을 사용하여 $^{90}Sr+^{90}Y(1.65mCi)$ 베타선원에 대해 교정점 30cm 거리에서 조직표면의 흡수선량을 측정하였다. 이때 흡수선량 측정에 영향을 주는 유효단면적, 입사창 감쇠율, 극성효과, 이온 재결합을 등의 보정인자를 분석하였다. 이들 인자를 보정한 후의 조직표면의 흡수선량은 $1.493{\mu}Gy/sec({\pm}2.9%)$로 평가되었다.

  • PDF

Use of Cylindrical Chambers as Substitutes for Parallel-Plate Chambers in Low-Energy Electron Dosimetry

  • Chun, Minsoo;An, Hyun Joon;Kang, Seong-Hee;Cho, Jin Dong;Park, Jong Min;Kim, Jung-in
    • 한국의학물리학회지:의학물리
    • /
    • 제29권1호
    • /
    • pp.16-22
    • /
    • 2018
  • Current dosimetry protocols recommend the use of parallel-plate chambers in electron dosimetry because the electron fluence perturbation can be effectively minimized. However, substitutable methods to calibrate and measure the electron output and energy with the widely used cylindrical chamber should be developed in case a parallel-plate chamber is unavailable. In this study, we measured the correction factors and absolute dose-to-water of electrons with energies of 4, 6, 9, 12, 16, and 20 MeV using Farmer-type and Roos chambers by varying the dose rates according to the AAPM TG-51 protocol. The ion recombination factor and absolute dose were found to be varied across the chamber types, energy, and dose rate, and these phenomena were remarkable at a low energy (4 MeV), which was in good agreement with literature. While the ion recombination factor showed a difference across chamber types of less than 0.4%, the absolute dose differences between them were largest at 4 MeV at approximately 1.5%. We therefore found that the absolute dose with respect to the dose rate was strongly influenced by ion-collection efficiency. Although more rigorous validation with other types of chambers and protocols should be performed, the outcome of the study shows the feasibility of replacing the parallel-plate chamber with the cylindrical chamber in electron dosimetry.