• Title/Summary/Keyword: Ion leaching

Search Result 162, Processing Time 0.031 seconds

Investigation on soil contamination and its remediation system in the vicinity of abandoned Au-Ag mine in Korea (휴/폐광 금은광산 주변의 토양오염조사와 복구시스템 연구)

  • 정명채
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.73-82
    • /
    • 1999
  • The objectives of this study are to investigate soil contamination in the vicinity of abandoned Au-Ag mine and to apply a remediation technique of liming to tailings. In the study area of the Imcheon Au-Ag mine, soils were sampled in and around the mine the analyzed by Atomic Absorption Spectrometry extracted by both 0.1N HCl and aqua regia. Elevated levels of Cd, Cu, Pb and Zn concentrations extracted by 0.1N HCl were found in soils taken from tailings site. These high contents directly influenced metal concentrations in soils taken in the vicinity of the site. This is mainly due to clastic movement by wind and effluent of mine waste water. In addition, relatively enriched concentrations of the metals were found in soils extrated by aqua regia due to strong decomposition of the samples compared with 0.1N HCl extration. According to the statistical approach, metal concentrations in soils by 0.1N HCl had a positive correlation with those by aqua regia extraction. Mine waste waters and stream waters were also sampled around the mine in spring and summer and analyzed by AAS for Cd, Cu, Pb and Zn, and by Ion Chromatography for anions. Like soils developed over tailings, significant levels of metals and sulphates were found in the mine waste waters ranging of 0.2~0.3, 0.5~2.0, 0.2~2.8, 30~50 and 1,240~4,700 mg/l of Cd, Cu, Pb, Zn and $SO_4^{2-}$, respectively. These elevated levels influenced in the stream waters in the vicinity of the tailings site. In seasonal variation of metal and anion contents, relatively high levels were found in waters sampled on summer due to leaching the metals and anions from tailings by rain. This study also examined the possibility of lime treatment for remediation of acid mine tailings and assumed to be 46 tones of pulverized lime for neutralization of the tailings.

  • PDF

A Study on the Degradation Properties of Aqueous Trinitrotoluene by Palladium Catalyst and Formic Acid (Palladium 촉매와 포름산을 활용한 액상 trinitrotoluene 분해 특성 연구)

  • Jeong, Sangjo;Choi, Hyungjin;Park, Sangjin;Lee, Juneil
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.468-475
    • /
    • 2015
  • Various methods to degrade explosives efficiently in natural soil and water that include trinitrotoluene (TNT) have been studied. In this study, TNT in water was degraded by reduction with palladium (Pd) catalyst impregnated onto alumina (henceforth Pd-Al catalyst) and formic acid. The degradation of TNT was faster when the temperature of water was high, and the initial TNT concentration, pH, and ion concentration in water were low. The amounts of Pd-Al catalyst and formic acid were also important for TNT degradation in water. According to the experimental results, the degradation constant of TNT with unit mass of Pd-Al catalyst was $8.37min^{-1}g^{-1}$. The degradation constant of TNT was higher than the results of previous studies which used zero valent iron. 2,6-diamino-4-nitrotoluene and 2-amino-4,6-dinitrotoluene were detected as by-products of TNT degradation showing that TNT was reduced. The by-products of TNT were also completely degraded after reaction when both Pd-Al catalyst and formic acid existed. Even though there are several challenges of Pd-Al catalyst (e.g., deactivation, poisoning, leaching, etc.), the results of this study show that TNT degradation by Pd-Al catalyst and formic acid is a promising technique to remediate explosive contaminated water and soil.

Temporal Changes and Correlations Between the Chemical Characteristics of Soils in the Case of the Reclaimed Costal Area of Kyung-Gi Province, Korea (서해안 임해매립지 녹지공간 토양성분들의 상관성 및 경시적 변화특성)

  • 구본학;강재선;김정욱
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.5
    • /
    • pp.161-169
    • /
    • 2000
  • In this study, the temporal changes in the chemical characteristics of soil in a reclaimed coastal area, the Shihwa Industrial Complex in the West Coast in Kyung-Gi Province, and the correlations between chemical components were investigated to provide useful information needed for introducing vegetation in the area. The sites were filled with mountain forest soils from 1987 to 1996, and developed into various landuses such as neighbourhood parks, children's parks, buffer greens, pedestrian roads and others. The correlation analyses shoed that pH, organic matter(OM) and available P205 had not been closely related to other chemical parameters such as various cations electro-conductivity(EC) and cation exchange capacity(CEC): especially, pH showed a very low correlation with other factors. The EC turned out to have positive relationships with cations, especially with Na+ ions. There seemed to be fairly good correlations between cations except Ca++ ion. The relation between cations and OM was inconclusive possible because the OM contents in the soils were too low for the analysis. The OM seemed to increase slowly with time and the EC decreased slowly. The salinity and CEC in the original soils decreased rapidly possibly because of leaching. It is believed that there were some external disturbances such as rainfall which had affected the soil properties. The soils sampled in dry season showed a very high salinity. From this it is possible to assume that the rainfall would affect the sol properties significantly. So it is necessary to continue further studies to investigate the impacts of external disturbances such as rainfall on vertical soil profile and temporal variations as well as to delineate correlations between parameters with external disturbances controlled.

  • PDF

A Study on Dealumination of NaY Zeolite and its VOCs Adsorption Properties (Dealumination에 의한 NaY zeolite의 개질과 VOCs 흡착특성에 관한 연구)

  • Kang, Shinchoon;Lee, Hwayeol;Park, Yeungho
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.339-349
    • /
    • 2015
  • In this work, DAY (Dealuminated Y-type) zeolites were prepared to be used as easily regenerable and thermally stable adsorbent substituting activated carbon. NaY zeolites were transformed into DAY zeolites through ion exchange, calcination, steaming, and acid leaching. Calcination temperature and time, and steaming time were changed to increase the Si/Al ratio and maintain crystallinity. Adsorption of VOCs were done for prepared DAY, commercial NaY and Hisiv 1000 in air with relative humidity of 50%. The DAY zeolite prepared by calcination at $520^{\circ}C$ for 4 hrs and steaming for 7 hrs had a same structure and a Si/Al ratio of 80.4. Its adsorption capacity for water vapor was 10% of NaY, indicating its hydrophobicity. Its adsorption capacity for MEK was 0.8 times of Hisiv 1000, that for toluene 1.6 times, and that for EA 1.3 times.

Effect of Carbon on Electrode Characteristics of $LiCoO_2$ Resynthesis ($LiCoO_2$의 재합성시(再合成時) 전극특성(電極特性)에 미치는 탄소(炭素)의 영향(影響))

  • Lee, Churl-Kyoung;Park, Jeong-Kil;Sohn, Jeong-Soo
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.10-19
    • /
    • 2007
  • The mechanical process followed by hydrometallurgical treatment has been developed in order to recover cobalt and lithium from spent lithium ion battery. In the previous study, a citrate precursor combustion process to prepare cathodic active materials from the leaching solution was elucidated. Resynthesis of electrode materials should be more valuable in spent battery recycling. Conventional slurry mixing of $LiCoO_2$ and carbon cannot make uniform distribution, and therefore the cathode cannot reach the theoretical charge-discharge capacity and is easily degraded during the charge-discharge cycling. In this study, ultra-fine $LiCoO_2$ powders has been prepared by modification of the combustion process and fabricated the enhanced cathode by modification of mixing method of $LiCoO_2$ and carbon added.

Synthesis of Zeolite P1 and Analcime from Sewage Sludge Incinerator Fly Ash (하수슬러지 소각 비산재를 이용한 제올라이트 P1 및 Analcime의 합성)

  • Lee, Je-Seung;Chung, Sook-Nye;Park, Chul-Hwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.659-665
    • /
    • 2008
  • This study is about zeolite synthesis from the sewage sludge incinerator fly ash of "S" sewage treatment center located in Seoul. For this purpose, the properties of raw fly ash as starting material, the hydrothermal conditions for zeolite synthesis and the environmental applicabilities of synthesized zeolites were examined. Fly ash from sewage sludge incinerator has large quantities of SiO$_2$ and Al$_2$O$_3$ and their contents are 42.8 wt.% and 21.2 wt.% respectively. So fly ash is considered to be possible starting material for zeolite synthesis. The results from leaching test of fly ash showed that the concentration of hazardous metals were very low as compared with the Korea leaching standard of the Waste Management Law. But the concentration from total recoverable test of fly ash were higher than the fertilizer standard of Fertilizer Management Law. Major zeolite products synthesized by hydrothermal reaction are analcime in teflon vessel and zeolite P1 in borosilicate flask. Optimum conditions for the synthesis of analcime were 1 N of NaOH concentration, 16 hour of reaction time and 135$^{\circ}C$ of reaction temperature. For the zeolite P1 formation, the proper conditions were demonstrated to be 5 N of NaOH concentration, 16 hour reaction time and 130$^{\circ}C$ of reaction temperature in this study. Hazardous metal contents in the analcime product are similar with those in raw fly ash. In case of the zeolite P1, the contents are reduced to nearly a half. Raw fly ash and the analcime product showed NH$_4{^+}$ ion exchange capacity of 0$\sim$1.0 mg of NH$_4{^+}$g$^{-1}$ and 3.0$\sim$7.4 mg of NH$_4{^+}$g$^{-1}$, respectively. However, the zeolite P1 product reached exchange capacity to 14.6$\sim$17.8 mg of NH$_4{^+}$g$^{-1}$. This values are in the range of those of natural clinoptilolite and phillipsite. From this point of view, zeolite synthesis from sewage treatment sludge incinerator fly ash is a good alternative for solid waste recycling.

Recycling of end-of-life LiNixCoyMnzO2 batteries for rare metals recovery

  • Sattar, Rabia;Ilyas, Sadia;Kousar, Sidra;Khalid, Amaila;Sajid, Munazzah;Bukhari, Sania Iqbal
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.88-95
    • /
    • 2020
  • An investigation of rare metals recovery from LiNixCoyMnzO2 cathode material of the end-of-life lithium-ion batteries is presented. To determine the influence of reductant on the leach process, the cathode material (containing Li 7.6%, Co 20.4%, Mn 19.4%, and Ni 19.3%) was leached in H2SO4 solutions either with or without H2O2. The optimal process parameters with respect to acid concentration, addition dosage of H2O2, temperature, and the leaching time were found to be 2.0 M H2SO4, 4 vol.% H2O2, 70℃, and 150 min, respectively. The yield of metal values in the leach liquor was > 99%. The leach liquor was subsequently treated by precipitation techniques to recover nickel as Ni(C4H7N2O2)2 and lithium as Li2CO3 with stoichiometric ratios of 2:1 and 1.2:1 of dimethylglyoxime:Ni and Na2CO3:Li, respectively. Cobalt was recovered by solvent extraction following a 3-stage process using Na-Cyanex 272 at pHeq ~5.0 with an organic-to-aqueous phase ratio (O/A) of 2/3. The loaded organic phase was stripped with 2.0 M H2SO4 at an O/A ratio of 8/1 to yield a solution of 114 g/L CoSO4; finally recovered CoSO4.xH2O by crystallization. The process economics were analyzed and found to be viable with a margin of $476 per ton of the cathode material.

Separation of Valuable Metal from Waste Photovoltaic Ribbon through Extraction and Precipitation

  • Chen, Wei-Sheng;Chen, Yen-Jung;Yueh, Kai-Chieh
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.69-77
    • /
    • 2020
  • With rapid increasing production and installation, recycling of photovoltaic modules has become the main issue. According to the research, the accumulation of waste modules will reach to 8600 tons in 2030. Moreover, Crystalline-silicon (c-Si) Photovoltaic modules account for more than 90% of the waste. C-Si PV modules contain 1.3% of weight of photovoltaic ribbon inside which contains the most of lead, tin and copper in the PV modules, which would cause environmental and humility problem. This study provided a valuable metal separation process for PV ribbons. Ribbons content 82.1% of Cu, 8.9% of Sn, 5.2% of Pb, and 3.1% of Ag. All of them were leached by 3M of hydrochloric acid in the optimal condition. Ag was halogenated to AgCl and precipitated. Cu ion was extracted and separated from Pb and Sn by Lix984N then stripped by 3M H2SO4. The effect of the optimal parameters of extraction was also studied in this essay. The maximum extraction efficiency of Cu ion was 99.64%. The separation condition of Pb and Sn were obtained by adjusting the pH value to 4 thought ammonia to precipitate and separate Pb and Sn. The recovery of Pb and Sn can reach 99%.

Recoverty of Lithium Carbonate and Nickel from Cathode Active Material LNO(Li2NiO2) of Precursor Process Byproducts (전구체 공정부산물 LNO(Li2NiO2)계 양극활물질로부터 탄산리튬 및 니켈 회수연구)

  • Pyo, Je-Jung;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.28 no.4
    • /
    • pp.30-36
    • /
    • 2019
  • In this study, Li powder was recovered from the by-product of LNO ($Li_2NiO_2$) process, which is the positive electrode active material of waste lithium ion battery, through the $CO_2$ thermal reaction process. In the process of recovering Li powder, the $CO_2$ injection amount is 300 cc/min. The $Li_2NiO_2$ award was phase-separated into the $Li_2CO_3$ phase and the NiO phase by holding at $600^{\circ}C$ for 1 min. After this, the collected sample:distilled water = 1:50 weight ratio, and after leaching, the solution was subjected to vacuum filtration to recover $Li_2CO_3$ from the solution, and the NiO powder was recovered. In order to increase the purity of Ni, it was maintained in $H_2$ atmosphere for 3 hours to reduce NiO to Ni. Through the above-mentioned steps, the purity of Li was 2290 ppm and the recovery was 92.74% from the solution, and Ni was finally produced 90.1% purity, 92.6% recovery.

Effects of Artificial Acid Rain on Chemical Properties of Korean Forest Soils (인공산성우(人工酸性雨)가 삼림토양(森林土壤)의 화학적(化學的) 성질(性質)에 미치는 영향(影響))

  • Joo, Yeong Teuk;Kim, Young Chai
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.3
    • /
    • pp.280-285
    • /
    • 1994
  • This study was conducted to investigate the effects of acid deposition on forest soil, major five Korean forest soils(Brown, Dark red, Gray brown, Red and Yellow, and Volcanic ash forest soils) The samples were subjected to receive 1200mm($100mm{\times}12$ times) of artificial acid rain adjusted to pH5.6, 4.0, 3.0 and 2.0. The results obtained of major importance are summarized as follow ; 1. Ca appeared mostly affected at pH treatment of 2.0, while less affected by other pH treatments. Leaching of Ca rapidly increased with increasing of artificial acid rain acidity and application times in Dark red forest soil. 2. In the cases of Mg, K and Na, they showed gradual increase with the addition of artificial acid rain. Mg and Na losses showed similar leaching patterns, but they didn't show difference among the five forest soils. 3. Exchangeable canon concentrations in the soil leachates, which looked slightly different among the five forest soils, were the highest in pH2.0 treatment. Hydrogen ion comsumption capability by exchangeable canon was the highest in Dark red forest soil followed by Volcanic ash, Red and Yellow, Gray brown and Brown forest soils when artificial acid rain were treated.

  • PDF