• Title/Summary/Keyword: Ion gel

Search Result 793, Processing Time 0.022 seconds

Purification and Some Characteristics of the Proteolytic Enzyme in Fruitbody of Neungee [Sarcodon aspratus (Berk.) S. Ito] (능이 [Sarcodon aspratus (Berk.) S. Ito]중 단백질(蛋白質) 가수분해(加水分解) 효소(酵素)의 정제(精製) 및 성질(性質)에 관하여)

  • Lee, Tae-Kyoo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.15 no.3
    • /
    • pp.276-285
    • /
    • 1986
  • This study was undertaken to investigate the characteristics of the proteolytic enzyme extracted from Neungee mushroom [Sarcodon aspratus (Berk.) S. Ito]. The enzyme was purified by using Tris-acryl CM-cellulose ion exchange, gel filtration on Ultrogel AcA 54, Hydroxy apatite column chromatography and preparative isoelectic focusing. The specific activity of the purified enzyme increased 8 times as compared with that of the crude enzyme. The enzyme was homogeneous on polyacrylamide gel electrophoresis (PAGE). The optimum pH was 10.1, indicating the enzyme to be alkaline protease and the optimum temperature was $57^{\circ}C$. The enzyme was stable at temperatures lower than $50^{\circ}C$and at pH values ranging from 4.0 to 10.8. However, the enzyme activity decreased by 26 and 65% at 60 and $65^{\circ}C$, respectively, when incubated for 30 minutes. The enzyme activity was activated by $Mn^{++}$ and inhibited by $Cu^{++}$ and $Hg^{++}$. The enzyme was consisted of monomer and its molecular weight estimated to be about 30,100 when determined by sodium dodecyl sulfate PAGE. Isoelectric point of the enzyme was determined to be 9.80.

  • PDF

Purification and Characterization of 5,10-Methenyltetrahydrofolate Synthetase from Chicken Liver (닭의 간 유래의 5,10-Methenyltetrahydrofolate Synthetase의 정제 및 특성)

  • Cho, Yong-Kweon
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.567-572
    • /
    • 2010
  • 5,10-Methenyltetrahydrofolate synthetase from chicken liver was purified through 30-70% ammonium sulfate fractionation, Q Sepharose Fast Flow anion exchange and Source 15Phe hydrophobic interaction chromatography. Specific activities of cell extract, ammonium sulfate, Q Sepharose Fast Flow and Source 15Phe were 0.0085, 0.031, 0.80 and 1.27 U/mg, respectively. Purification fold activities of cell extract, ammonium sulfate, Q Sepharose Fast Flow and Source 15Phe were 1, 3.7, 94.1 and 149.4, respectively. HPLC gel permeation chromatography and SDS-polyacrylamide electrophoresis experiments indicated that the enzyme is a monomeric protein with a molecular weight of 22.8 kDa. Km for 5-methyl THF and Mg-ATP were $7.1\;{\mu}M$ and $63\;{\mu}M$, respectively. Optimum temperature and pH were $30^{\circ}C$ and 6.0, respectively. The data for metal ion specificity and stoichiometry showed that the maximum activity was obtained with a 1:l. ratio of $Mg^{2+}$. The ATP and Km values increased in the order of MgATP, MgCTP, MgUTP and MgGTP, and the maximum activities also decreased in the same order, indicating MgATP as the most efficient substrate. The enzyme was chemically modified only by tetranitrometane and 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide, indicating that tyrosine and carboxylate are present in the active site.

Purification and Characterization of Gibberellin $3Beta$-Hydroxylase from Immature Seeds of Phaseolus vulgaris (강낭콩미숙종자로부터 Gibberellin $3Beta$-Hydroxylase 정제 및 성질)

  • 곽상수
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.133-148
    • /
    • 1987
  • Gibberellin(GA) 3-$\beta$ hydroxylation is very important for the shoot elogation in the higher plants, since only 3$\beta$-hydryoxylated GAs promote shoot elogation in several plants. Fluctuation of 3$\beta$-hydryoxylase activity was examined during seed maturation using two cultivars of , P. vulgaris, Kentucky Wonder (normal) and Masterpiece (dwarf). Very immature seeds of both cultivars contain high level of 3$\beta$-hydroxylase activity (per mg protein). Both cultivars showed maximum of enzyme activity (per seed) in the middle of their maturation process. Gibberellin 3$\beta$-hydroxylase catalyzing the hydroxylation of GA20 to GA1 was purified 313-fold from very early immature seeds of P. vulgaris. Crude soluble enzyme extracts were purified by 15% methanol precipitation, hydrophobic interaction chromatogrphy, DEAE ion exchange column chromatography and gel filtration HPLC. The 3$\beta$-hydroxylase activity was unstable and lost much of its activity duting the purification. The molecular weight of purified enzyme was extimated to be 42, 000 by gel filtration HPLC and SDS-PAGE. The enzyme exhibited maximum activity at pH 7.7. The Km values for [2.3-3H] GA20 and [2.3-3H]GA9 were 0.29 $\mu$M and 0.33 $\mu$M, respectively. The enzyme requires 2-oxoglutarate as a cosubstrate; the Km value for 2-oxoglutarate was 250 $\mu$M using 3H GA20 as a substrate. Fe2+ and ascorbate significantly activated the enzyme at all purification steps, while catalase and BSA activated the purified enzyme only. The enzyme was inhibited by divalent cations Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+. Effects of several GAs and GA anaogues on the putrified 3$\beta$-hydroxylase were examined using [3H]GA9 and GA20 as a substrates. Among them, GA5, GA9, GA15, GA20 and GA44 inhibited the enzyme activity. [13C, 3H] GA20 was converted by the partially purified enzyme preparation to [13C, 3H]GA1, GA5 and GA6, which were identified by GC-MS, GA9 was converted only GA4, GA15 and GA44 were converted to GA37 and GA38, respectively. GA5 was epoxidized to GA6 by the preparation. This suggests that 3$\beta$-hydroxylation of GA20 and epoxidation of GA5 are catalyzed by the same enzyme in P, vulgaris.

  • PDF

Adipic Acid Assisted Sol-Gel Synthesis of Li1+x(Mn0.4Ni0.4Fe0.2)1-xO2 (0 < x < 0.3) as Cathode Materials for Lithium Ion Batteries

  • Karthikeyan, Kaliyappan;Amaresh, Samuthirapandian;Son, Ju-Nam;Kim, Shin-Ho;Kim, Min-Chul;Kim, Kwang-Jin;Lee, Sol-Nip;Lee, Yun-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.89-94
    • /
    • 2013
  • Layered $Li_{1+x}(Mn_{0.4}Ni_{0.4}Fe_{0.2})_{1-x}O_2$ (0 < x < 0.3) solid solutions were synthesized using solgel method with adipic acid as chelating agent. Structural and electrochemical properties of the prepared powders were examined by means of X-ray diffraction, Scanning electron microscopy and galvanostatic charge/discharge cycling. All powders had a phase-pure layered structure with $R\bar{3}m$ space group. The morphological studies confirmed that the size of the particles increased at higher x content. The charge-discharge profiles of the solid solution against lithium using 1 M $LiPF_6$ in EC/DMC as electrolyte revealed that the discharge capacity increases with increasing lithium content at the 3a sites. Among the cells, $Li_{1.2}(Mn_{0.32}Ni_{0.32}Fe_{0.16})O_2$ (x = 0.2)/$Li^+$ exhibits a good electrochemical property with maximum initial capacity of 160 $mAhg^{-1}$ between 2-4.5 V at 0.1 $mAcm^{-2}$ current density and the capacity retention after 25 cycles was 92%. Whereas, the cell fabricated with x = 0.3 sample showed continuous capacity fading due to the formation of spinel like structure during the subsequent cycling. The preparation of solid solutions based on $LiNiO_2-LiFeO_2-Li_2MnO_3$ has improved the properties of its end members.

Purification and Characterization of β-Xylosidase from Paenibacillus sp. DG-22 (Paenibacillus sp. DG-22로부터 β-xylosidase의 정제 및 특성분석)

  • Lee, Tae-Hyeong;Lim, Pyung-Ok;Lee, Yong-Eok
    • Journal of Life Science
    • /
    • v.17 no.10
    • /
    • pp.1341-1346
    • /
    • 2007
  • An intracellular ${\beta}-xylosidase$ from Paenibacillus sp. DG-22 was purified to homogeneity by ion-exchange, hydrophobic interaction and gel-filtration chromatography. The molecular weight of the enzyme was measured to be 156,000 by gel filtration and 80,000 by SDS-PAGE, indicating that the enzyme consisted of two identical subunits. The purified enzyme exhibited maximum activity at $65^{\circ}C$ and pH 5.5. It retained 89% of its initial activity up to 60 min at $60^{\circ}C$ and had a half-life of 25 min at $65^{\circ}C$. The enzyme was highly specific for pNPX as the substrate. It showed little or no activity against other p-nitrophenyl glycosides and xylans. The $K_m\;and\;V_{max}$ for pNPX was 0.53 mM and 3.18 U/mg protein, respectively. The ${\beta}-xylosidase$ was strongly inhibited by $Ag^+,\;Fe^{2+},\;Hg^{2+}\;and\;Zn^{2+}$ and slightly activated by DTT. The hydrolysis product from xylobiose, xylotriose, and xylotetraose was xylose.

Isolation of Mutant Strains from Keratinase Producing Bacillus subtilis SMMJ-2 and Comparision of Their Enzymatic Properties (Keratinase 생산균 Bacillus subtilis SMMJ-2의 변이주 분리와 효소학적 특성 비교)

  • Ko, Hee-Sun;Kim, Hyun-Soo
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.429-436
    • /
    • 2010
  • Keratinase is widely used in certain industrial applications. The present study sought to improve the culture conditions of Bacillus subtilis SMMJ-2 to facilitate mass production of keratinase. Strain SMMJ-2 was irradiated by ultraviolet light and the resulting isolates were tested for keratinase activity. Isolates displaying elevated keratinase activity were selected and used to determine the optimum temperature (24, 30, 37, 45, $55^{\circ}C$) for bacterial keratinase production during a 4 day incubation period. The highest enzyme activity (55 units/mL/min), from a Bacillus subtilis SMMJ-2 mutant (mutant No. 2) was demonstrated following incubation at $30^{\circ}C$. The effects of carbon and nitrogen sources on keratinase production were confirmed by measuring the enzyme activity from the culture broth of the mutant strain cultured in various media containing different carbon source and nitrogen sources during a 4 day period. The optimal medium composition for producing keratinase consisted of 1% glucose, 0.7% $K_2HPO_4$, 0.2% $K_2HPO_4$, and 1.2% soybean meal. Optimal initial pH and temperature for producing keratinase were 7.0 and $30^{\circ}C$, respectively. Keratinases produced by B. subtilis SMMJ-2 and the mutant No. 2 were purified from the culture broth which used soybean meal as a nitrogen source. Membrane ultrafiltration, DEAE-sephacel ion exchange and Sephadex G-100 gel chromatography were used to purify the enzymes. The purified keratinases from both B. subtilis SMMJ-2 and the mutant No. 2 showed single bands and their molecular weights were estimated as 28 kDa and 42 kDa, respectively on SDS-polyacrylamide gel electrophoresis.

Production and Characterization of vitellogenin monoclonal antibody on the Scorpion fish Sebastiscus marmoratus (쏨뱅이, Sebastiscus marmoratus의 vitellogenin 단클론 항체생산 및 특성에 관한 연구)

  • Kim, Young-Ju;Lim, Yoon-Kyu;Yeo, In-Kyu
    • Journal of fish pathology
    • /
    • v.26 no.3
    • /
    • pp.241-254
    • /
    • 2013
  • In order to establish bio-marker systems for the screening of endocrine-disrupting chemicals contaminated in various environment, Vitellogenin(Vtg) bio-marker have been developed to detect Scorpion fish's(Sebastiscus marmoratus) Vtg. Vtg has been induced by administration of estradiol into S. marmoratus, and purified by gel filtration and ion-exchange chromatography from serum of the fish. After immunization of the purified Vtg into BALB/c mouse, hybridomas secreting anti-Vtg antibodies have been produced. The size of induced Vtg in the serum was about 440 kDa by gel filtration using Sepharose CL-6B. By SDS-PAGE analysis, the main band of Vtg, however, was at 175 kDa, and several minor bands have been detected with the main band. Eight different monoclonal antibodies have been produced from established hybridomas and the antibodies did not cross-react with sera from different species of fishes tested in this study except with that of Sebastes hubbsi. These results suggested that the monoclonal antibody of S28 and S15 can used as capture and tracer antibodies for ELISA and ICG assays. The detection systems developed in this study can be used as Bio-marker assays to check endocrine disrupting activity of various chemicals as well as to detect known endocrine disrupting chemicals contaminated in environment.

Mutational Analysis of an Essential RNA Stem-loop Structure in a Minimal RNA Substrate Specifically Cleaved by Leishmania RNA Virus 1-4 (LRV1-4) Capsid Endoribonuclease

  • Ro, Youngtae;Patterson, Jean L.
    • Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.239-247
    • /
    • 2003
  • The LRV1-4 capsid protein possesses an endoribonuclease activity that is responsible for the single site-specific cleavage in the 5' untranslated region (UTR) of its own viral RNA genome and the formation of a conserved stem-loop structure (stem-loop IV) in the UTR is essential for the accurate RNA cleavage by the capsid protein. To delineate the nucleotide sequences, which are essential for the correct formation of the stem-loop structure for the accurate RNA cleavage by the viral capsid protein, a wildtype minimal RNA transcript (RNA 5' 249-342) and several synthetic RNA transcripts encoding point-mutations in the stem-loop region were generated in an in vitro transcription system, and used as substrates for the RNA cleavage assay and RNase mapping studies. When the RNA 5' 249-342 transcript was subjected to RNase T1 and A mapping studies, the results showed that the predicted RNA secondary structure in the stem-loop region using FOLD analysis only existed in the presence of Mg$\^$2+/ ions, suggesting that the metal ion stabilizes the stem-loop structure of the substrate RNA in solution. When point-mutated RNA substrates were used in the RNA cleavage assay and RNase T1 mapping study, the specific nucleotide sequences in the stem-loop region were not required for the accurate RNA cleavage by the viral capsid protein, but the formation of a stem-loop like structure in a region (nucleotides from 267 to 287) stabilized by Mg$\^$2+/ ions was critical for the accurate RNA cleavage. The RNase T1 mapping and EMSA studies revealed that the Ca$\^$2+/ and Mn$\^$2+/ ions, among the reagents tested, could change the mobility of the substrate RNA 5' 249-342 on a gel similarly to that of Mg$\^$2+/ ions, but only Ca$\^$2+/ ions identically showed the stabilizing effect of Mg$\^$2+/ ions on the stem-loop structure, suggesting that binding of the metal ions (Mg$\^$2+/ or Ca$\^$2+/) onto the RNA substrate in solution causes change and stabilization of the RNA stem-loop structure, and only the substrate RNA with a rigid stem-loop structure in the essential region can be accurately cleaved by the LRV1-4 viral capsid protein.

Material Life Cycle Assessment of Graphene 2wt% Added to Li1.6Ni0.35Mn0.65O2 Half-Cell (그래핀 2wt%를 첨가한 Li1.6Ni0.35Mn0.65O2 Half-Cell의 물질 전 과정 평가)

  • CHO, KYOUNG-WON;LEE, YOUNG-HWAN;HAN, JEONG-HEUM;YU, JAE-SEON;HONG, TAE-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.132-137
    • /
    • 2020
  • Lithium secondary batteries have become an important power source for portable electronic devices such as cellular phones, laptop computers. Presently, commercialized lithium-ion batteries use a LiCoO2 cathode. However, due to the high cost and environmental problems resulting from cobalt, an intensive search for new electrode materials is being actively conducted. Recently, solid solution LiMn1-xNixO2 have become attractive because of high capacity and enhanced safety at high voltages over 4.5 V. The Li1.6Ni0.35Mn0.65O2 compounds were conventionally prepared by a sol-gel method, which can produce the layered Li-Ni-Mn-O compounds with a high homogeneity. And by adding a graphene 2wt% the first charge-discharge voltage profiles was increased over Li1.6Ni0.35Mn0.65O2 compound. Also, the variation s of the discharge capacities with cycling showed a higher capacity retention rater. In this study, material lifecycle evaluation was performed to analyze the environmental impact characteristics of Li1.6Ni0.35Mn0.65O2 & graphene 2wt% half-cell manufacturing process. The software of material life cycle assessment was Gabi. Through this, environmental impact assessment was performed for each process. The environmental loads induced by Li1.6Ni0.35Mn0.65O2 & graphene 2wt% synthesis process were quantified and analyzed, and the results showed that the amount of power had the greatest impact on the environment.

Tetrodotoxin in a Pufferfish, Fugu xanthopterus (Korean Name, Ggachibog) (까치복(Fugu xanthopterus)의 독성)

  • Hyun-Dae Kim;Yeung-Ho Park;Dong-Soo Kim
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.3
    • /
    • pp.502-508
    • /
    • 1994
  • A total of 24 specimens of the pufferfish, Fugu xanthopterus, purchased at a fixhmarket in Pusan, korea were examined for toxicity using the assay method of tetrodotoxin (TTX). Also, the toxins isolated from the puffer liver were partially purified and analyzed for their chemical composition by instrumental behaviors. On the whole, when the level of toxicity in each organ was analyzed compared to that of liver, they were 100 % of the lover, 92 % for the intestine, 75% for the skin, 17% for the muscle, 785 for the testis, 87% for the ovary, and 71% for bile. The highest and average scores of toxicity for the liver were 917 and $231{\pm}51MU/g$ liver, respectively. The toxins of the puffer gave four peaks in HPLC whose retention times (10, 20, 22 and 25 min) were close to those of TDA, TTX, 4-epi-TTX, and and -TTX, respectively.

  • PDF