• Title/Summary/Keyword: Ion electrical mobility

검색결과 76건 처리시간 0.02초

Experimental Investigation of Ion Mobility Measurements in Oxygen under Different Gas Pressures

  • Liu, Yun-Peng;Huang, Shi-long
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.852-857
    • /
    • 2017
  • In this paper, measurements of ion mobility were performed in oxygen at gas pressures of 44.52 - 101.19 kPa using the drift tube method. Over this pressure range, mobility values were within the limits of 1.796 to $3.821cm^2{\cdot}V^{-1}{\cdot}s^{-1}$ were determined and ion mobility shown to decrease non-linearly with increasing gas pressure towards a certain level of saturation. Ion mobility measured in air was lower than that measured in oxygen at the same gas pressure. Finally, a parameter correction method for calibrating the relationship between the ion mobility and gas pressure in oxygen was proposed.

진공증착법으로 제조된 $\beta$-PVDF 박막의 유전 특성에 미치는 이온의 영향 (The Effect of Ion Contribution to the Dielectric Properties of $\beta$-PVDF Thin Film Fabricated by Vapor Deposition Method)

  • 박수홍;김종택;이덕출
    • 한국전기전자재료학회논문지
    • /
    • 제11권11호
    • /
    • pp.1007-1013
    • /
    • 1998
  • In this paper, the dielectric properties of fabricated Polyvinylidene fluoride(PVDF, $PVF_2$) thin film with substrate temperature from 30 to at vapor deposition. The dielectric properties of PVDF thin film had been studied in the frequency range from 10Hz to 4MHz at measuring temperature between 20 and $100^{/circ}C$. The anomalous increasing in dielectric constant and dielectric loss at low frequencies and high temperature was described for PVDF thin film containing ion impurities. In particularly, ion mobility of fabricated PVDF thin film at substrate temperature at $30^{/circ}C$ decrease from $2\times10^{-5}\;to\;3.07$\times10^{-7}cm^2/V.s$ On the other hand, ion density increase abruptly from 1.49\times$$10^{13}$ to $1.5\times$10^{16}$cm^{-3}$ In spite of decreasing of ion mobility, dielectric constants and dielectric loss for PVDF thin film increase rapidly with decreasing frequency and high temperature. It was concluded that the dielectric constants and dielectric loss was related to ion density than to ion mobility at low frequency and high temperatures.

  • PDF

$SF_6$ 기체중에서의 음이온 이동도 측정 (Measurement of the negative ion mobility of $SF_6$ gas)

  • 백용현;김정섭;배상돈;구본재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 추계학술대회 논문집 학회본부
    • /
    • pp.249-251
    • /
    • 1988
  • In this paper, the negative ion mobility of $SF_6$ is determined using as a negative ion detector the burst pulse which is triggered in a positive point-plane gap by electrons detached from negative ions near the anode point. The result obtained for the negative ion mobility for zero field at atmospheric pressure is $0.57cm^2v^{-1}s^{-1}$.

  • PDF

Optimization of Ohmic Contact Metallization Process for AlGaN/GaN High Electron Mobility Transistor

  • Wang, Cong;Cho, Sung-Jin;Kim, Nam-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권1호
    • /
    • pp.32-35
    • /
    • 2013
  • In this paper, a manufacturing process was developed for fabricating high-quality AlGaN/GaN high electron mobility transistors (HEMTs) on silicon carbide (SiC) substrates. Various conditions and processing methods regarding the ohmic contact and pre-metal-deposition $BCl_3$ etching processes were evaluated in terms of the device performance. In order to obtain a good ohmic contact performance, we tested a Ti/Al/Ta/Au ohmic contact metallization scheme under different rapid thermal annealing (RTA) temperature and time. A $BCl_3$-based reactive-ion etching (RIE) method was performed before the ohmic metallization, since this approach was shown to produce a better ohmic contact compared to the as-fabricated HEMTs. A HEMT with a 0.5 ${\mu}m$ gate length was fabricated using this novel manufacturing process, which exhibits a maximum drain current density of 720 mA/mm and a peak transconductance of 235 mS/mm. The X-band output power density was 6.4 W/mm with a 53% power added efficiency (PAE).

Ar Ion Beam 처리를 통한 Organic Thin Film Transistor의 성능향상 (Performance enhancement of Organic Thin Film Transistor by Ar Ion Beam treatment)

  • 정석모;박재영;이문석
    • 대한전자공학회논문지SD
    • /
    • 제44권11호
    • /
    • pp.15-19
    • /
    • 2007
  • OTFTs (Organic Thin Film Transistors)의 구동에 있어, 게이트 절연막 표면과 채널의 계면상태가 소자의 전기적 특성에 큰 영향을 미치게 된다. OTS(Octadecyltrichlorosilane)등과 같은 습식 SAM(Self Assembly Monolayer)를 이용하거나, $O_2$ Plasma와 같은 건식 표면 처리등 여러 표면 처리법에 대한 연구가 진행되고 있다. 본 논문에서는 pentacene을 진공 증착하기 전에 게이트 절연막을 $O_2$ plasma와 Ar ion beam을 이용하여 건식법으로 전처리 한 후 표면 특성을 atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS)를 사용하여 비교 분석하였고, 각 조건으로 OTFT를 제작하여 전기적 특성을 확인하였다. Ar ion beam으로 표면처리 했을 때, $O_2$ plasma처리했을 때 보다 향상된 on/off ratio 전기적 특성을 얻을 수 있었다. 표면 세정을 위하여 $O_2$ plasma 처리시 $SiO_2$ 표면의 OH-기와 반응하여 oxide trap density가 높아지게 되고 이로 인하여 off current가 증가하는 문제가 발생한다. 불활성 가스인 Ar ion beam 처리를 할 경우 게이트 절연막의 세정 효과는 유지하면서, $O_2$ Plasma 처리했을 때 증가하게 되는 계면 trap을 억제할 수 있게 되어, mobility 특성은 동등 수준으로 유지하면서 off current를 현저하게 줄일 수 있게 되어, 결과적으로 높은 on/off ratio를 구현할 수 있다는 것을 확인하였다.

Polyethylene terephthalate 중의 가동이온의 계면특성과 이동도에 관한 연구 (A study on the characteristics of interlace and Mobility of Movable Ion in polyethylene Terephthalate)

  • 이호섭;오금곤;국상훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 추계학술대회 논문집 학회본부
    • /
    • pp.233-235
    • /
    • 1988
  • This study investigate that the behavior of movable ion in PET effect on the characteristics of the insulting materials. This examine that movable ion signal to. participation of $Ca^2\;Sb^3$ resulting catalyst refuse and characteristics of activation energy that is need to reionization of movable ion type and neutralized case as measuring characteristics of polarity reversal current or thermally stimulated current.

  • PDF

진공증착법을 이용한 유기 박막의 전기적 특성에 관한 연구 (A Study on the Electrical Characteristic of Organic Thin Film by Physical Vapor Deposition Method)

  • 박수홍
    • 전기학회논문지P
    • /
    • 제57권2호
    • /
    • pp.140-145
    • /
    • 2008
  • The purpose of this paper is to discuss the fabrication of $\beta$-PVDF($\beta$-Polyvinylidene fluoride, ${\beta}-PVF_2$) organic thin films using the vapor deposition method. Vapor deposition was performed under the following conditions: the temperature of evaporator, the applied electric field, and the pressure of reaction chamber were $270^{\circ}C$, 142.4 kV/cm, and $2.0{\times}10^{-5}\;Torr$, respectively. The molecular structure of the evaporated organic thin films were evaluated by a FT-IR. The results showed that the characteristic absorption peaks of $\beta$-form crystal increase from 72% to 95.5% with an increase in the substrate temperature. In the analysis of the electric characteristics, the abnormal increases in the relative dielectric constant and the dielectric loss factor in the regions of low frequency and high temperature are known to be caused by inclusion of impurity carriers in the PVDF organic thin films. In order to analyze quantitatively the abnormalities in the conductivity mechanism caused by ionic impurities, the product of the ion density and the mobility that affect the electrical property in polymeric insulators is analyzed. In the case of a specimen produced by varying the substrate temperature from $30^{\circ}C$ to $105^{\circ}C$, the product of mobility and the ion density decreased from $4.626{\times}10^8$ to $8.47{\times}10^7/V{\cdot}cm{\cdot}s$. This result suggests that the higher the substrate temperature is maintained, the better excluded the impurities are, and the more electrically stable material can be obtained.

Fabrication of excimer laser annealed poly-si thin film transistor by using an elevated temperature ion shower doping

  • Park, Seung-Chul;Jeon, Duk-Young
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제11권11호
    • /
    • pp.22-27
    • /
    • 1998
  • We have investigated the effect of an ion shower doping of the laser annealed poly-Si films at an elevated substrate temperatures. The substrate temperature was varied from room temperature to 300$^{\circ}C$ when the poly-Si film was doped with phosphorus by a non-mass-separated ion shower. Optical, structural, and electrical characterizations have been performed in order to study the effect of the ion showering doping. The sheet resistance of the doped poly-Si films was decreased from7${\times}$106 $\Omega$/$\square$ to 700 $\Omega$/$\square$ when the substrate temperature was increased from room temperature to 300$^{\circ}C$. This low sheet resistance is due to the fact that the doped film doesn't become amorphous but remains in the polycrystalline phase. The mildly elevated substrate temperature appears to reduce ion damages incurred in poly-Si films during ion-shower doping. Using the ion-shower doping at 250$^{\circ}C$, the field effect mobility of 120 $\textrm{cm}^2$/(v$.$s) has been obtained for the n-channel poly-Si TFTs.

  • PDF

The Prospect and Future of Li-ion Battery

  • Lee, Sung-Joon;Jeong, Seung-Hwan;You, Chung-Yeol;Soh, Dea-Wha;Hong, Sang-Jeen
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.627-628
    • /
    • 2005
  • In recent years, the rapid growth of portable electronic device market requires higher density characteristics of batteries. The speed at which portability and mobility is advancing hinges much on the battery. What is important is this energy source that engineers design handled devices around the battery, rather than the other way around. Much improvement has been made in reducing the power consumption of portable devices. Currently, the most popular secondary battery is Li-ion battery. Li-ion has won the limelight and become the most prominent battery. This paper reviews the prospect and future of the Li-ion battery.

  • PDF

CdTe/CdHgTe 코어쉘 나노입자를 이용한 P채널 전계효과박막트렌지스터의 전기적특성 (Electrical characteristics of Field Effect Thin Film Transistors with p-channels of CdTe/CdHgTe Core-Shell Nanocrystals)

  • 김동원;조경아;김현석;김상식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1341-1342
    • /
    • 2006
  • Electrical characteristics of field-effect thin film transistors (TFTs) with p-channels of CdTe/CdHgTe core-shell nanocrystals are investigated in this paper. For the fabrication of bottom- and top-gate TFTs, CdTe/CrHgTe nanocrystals synthesized by colloidal method are first dispersed on oxidized p+ Si substrates by spin-coating, the dispersed nanoparticles are sintered at $150^{\circ}C$ to form the channels for the TFTs, and $Al_{2}O_{3}$ layers are deposited on the channels. A representative bottom-gate field-effect TFT with a bottom-gate $SiO_2$ layer exhibits a mobility of $0.21cm^2$/ Vs and an Ion/Ioff ratio of $1.5{\times}10^2$ and a representative top-gate field-effect TFT with a top-gate $Al_{2}O_{3}$ layer provides a field-effect mobility of $0.026cm^2$/ Vs and an Ion/Ioff ratio of $2.5{\times}10^2$. $Al_{2}O_{3}$ was deposited for passivation of CdTe/CdHgTe core-shell nanocrystal layer, resulting in enhanced hole mobility, Ior/Ioff ratio by 0.25, $3{\times}10^3$, respectively. The CdTe/CdHgTe nanocrystal-based TFTs with bottom- and top gate geometries are compared in this paper.

  • PDF