• Title/Summary/Keyword: Ion concentration

Search Result 2,970, Processing Time 0.03 seconds

Adsorption and Catalytic Characteristics of Acid-Treated Clinoptilolite Zeolite (산처리한 Clinoptilolite Zeolite 의 흡착 및 촉매특성)

  • Chon Hakze;Seo Gon
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.469-478
    • /
    • 1976
  • Clinoptilolite zeolite samples were treated with hydrochloric acid, sulfuric acid and phosphoric acid of different strength and the adsorption characteristics and crystal structures of the original and acid-treated clinoptilolites were studied. By treating with hydrochloric acid, the adsorbed amount increased to 5-fold for nitrogen, to 3-fold for benzene, but for methanol no significant change was observed. As acid strength increased further, there were declines both in adsorption capacity and crystallinity. The results showed that the increase of adsorbed amount was caused by the rearrangement of the pore entrance and cation exchange. A method for determination of clinoptilolite content in natural mineral based on benzene adsorption on acid-treated sample is proposed. By this method, the original sample used in this study was found to contain approximately 40% of clinoptilolite. Using pulse technique in micro-catalytic reactor system, the catalytic activities of hydrochloric acid-treated clinoptilolites in cumene cracking and toluene disproportionation reactions were measured. For cumene cracking reaction, the maximum conversion was observed for the 0.5 N hydrochloric acid-treated sample. It is instructive to note that the maximum benzene adsorption was also observed for the sample treated with 0.5 N HCl. This suggest that the conversion rate was determined mainly by the rate of transport of reactants and the products through the pore structure. In the toluene disproportionation reaction, the same trend was observed. But the rate of deactivation was high for samples with strong acid sites. Since catalyst having higher activity was deactivated more easily, the conversion maximum was shifted to the sample treated with higher concentration of acid, -1N. The catalytic activity of $Ca^{2+} and La^{3+} ion exchanged samples for the toluene disproportion was much lower than that of acid-treated samples. Introduction of Ca^{2+} and La^{3+}$ into the pore structure apparently decreases the effective pore diameter of acid-treated clinoptilolite thus limiting the diffusion of reactants and products.

  • PDF

Antioxidant and physiological activities of Hijikia fusiforme by extraction methods (추출방법에 따른 톳 추출물의 항산화 및 생리활성 특성)

  • Kwon, Yu-ri;Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.24 no.5
    • /
    • pp.631-637
    • /
    • 2017
  • The physiological properties of extracts from Hizikia fusiforme with different extraction methods (hot water extraction, autoclave extraction and high pressure extraction) were investigated. The amounts of substances related to polyphenol and flavonoids contents were the highest in autoclave extract (30.51 mg/g and 4.78 mg/g, respectively). The DPPH radical scavenging activity was the highest in the autoclave extract (81.80%) at the 5 mg/mL. Autoclave extract exhibited the strongest ABTS radical scavenging activity and reducing power among the three extraction methods. However, ferrous ion chelating, TBA reactive substances and xanthine oxidase inhibition activity of high pressure extract were higher than those of the other extracts. Additionally, the tyrosinase and elastase inhibition activities of high pressure extract with a concentration of 1 mg/mL were higher than those of the other extracts. These results suggest that extracts of Hizikia fusiforme have a potential to act as functional materials, and autoclave and high pressure extractions are superior to hot water extraction for enhancement of the biological activity.

Quality characteristics, antioxidant activity and storage properties of fermented milk added with green tea powder (녹차가루 첨가 발효유의 이화학적 특성과 항산화활성 및 저장성평가)

  • Yeo, Su-bin;Yeo, Soo-Hwan;Park, Heui-Dong
    • Food Science and Preservation
    • /
    • v.24 no.5
    • /
    • pp.576-584
    • /
    • 2017
  • With the goal of developing a new functional fermentation milk using green tea powder (GP), milk was fermented with direct vat set (DVS) starter culture containing Streptococcus salivarius subsp. thermophilus, Lactobacillus paracasei and L. delbrueckii subsp. bulgaricus. We investigated fermentation characteristics and antioxidative activities of fermented milk supplemented with different concentrations (0.5, 1, 2, 3%) of GP. All samples were evaluated for pH, total acidity, viable cell count, and sugar contents. The pH of all samples decreased during fermentation, and the final pH ranged from 4.35 to 4.51. The acidity increased during fermentation, after the fermentation was completed, the titratable acidity was 0.8 to 1.1%. And viable cell count of all samples increased during fermentation, and the final viable cell count was 8.57 to 8.89 log CFU/mL. The sugar content decreased as the fermentation proceeded and finally reached 12 to $13^{\circ}Brix$. And increasing GP, decreased brightness and increased yellowness. Increasing GP concentration added to milk, improved DPPH free radical scavenging activity and ferric ion reducing activity of fermentation milk. The fermentation milk kept their pH, total acidity and viable cell counts standard of fermentation milk during the storage period at $4^{\circ}C$. These findings confirmed the possibility of development of the novel functional fermentation milk through the investigation of the quality characteristics of the fermentation milk added with GP.

Effect of Ionic Molar Conductivity on Separation Characteristics of Heavy Metals by Nanofiltration Membranes in Waste Water (이온 몰 전도도가 나노여과막에 의한 폐수 중의 중금속 분리특성에 미치는 영향)

  • Oh, Jeong-Ik
    • Land and Housing Review
    • /
    • v.4 no.1
    • /
    • pp.119-124
    • /
    • 2013
  • Generally, the characteristic of nanofiltration membranes were catagorized into charged membrane, sieve effect, interaction between membarnes and target solutes. This study aims to investigate the effect item of heavy metal separation with view of charge nanofiltration membranes. The experiments of nanofiltration were conducted by nanofiltration set-up with operational pressure of 0.24 MPa at $25^{\circ}C$ by using synthetic wastewater containing 0.1mg/L of Cr, Fe, Cu, Zn, As, Sn, Pb. Nanofiltration membranes rejected heavy metals much better than chloride, sulfate and TOC, of which concentration in synthetic wastewater was higher than that of heavy metals. To consider rejection characteristics of various metals by nanofiltration membranes, separation coefficient, which is the molar conductivity ratio of the metal permeation rate to the chloride ion or TOC permeation rate, was introduced. In spite of different materials and different nominal salt rejection of nanofiltration membrane used, the separation coefficients of metals were nearly the same. These phenomena were observed in the relationship between the molar conductivity and the separation coefficient for heavy metals.

Mechanism of Membrane Hyperpolarization by Extracellular $K^+$ in Resistance-sized Cerebral Arterial Muscle Cell of Rabbit

  • Kim, Se-Hoon;Choi, Kun-Moo;Kim, Hoe-Suk;Jeon, Byeong-Hwa;Chang, Seok-Jong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 1999
  • We sought to find out the mechanism of vascular relaxation by extracellular $K^+$ concentration $([K^+]_o)$ in the cerebral resistant arteriole from rabbit. Single cells were isolated from the cerebral resistant arteriole, and using voltage-clamp technique barium-sensitive $K^+$ currents were recorded, and their characteristics were observed. Afterwards, the changes in membrane potential and currents through the membrane caused by the change in $[K^+]_o$ was observed. In the smooth muscle cells of cerebral resistant arteriole, ion currents that are blocked by barium, 4-aminopyridine (4-AP), and tetraethylammonium (TEA) exist. Currents that were blocked by barium showed inward rectification. When the $[K^+]_o$ were 6, 20, 60, and 140 mM, the reversal potentials were $-82.7{\pm}1.0,\;-49.5{\pm}1.86,\;-26{\pm}1.14,\;-5.18{\pm}1.17$ mV, respectively, and these values were almost identical to the calculated $K^+$ equilibrium potential. The inhibition of barium-sensitive inward currents by barium depended on the membrane potential. At the membrane potentials of -140, -100, and -60 mV, $K_d$ values were 0.44, 1.19, and 4.82 ${\mu}M,$ respectively. When $[K^+]_o$ was elevatedfrom 6 mM to 15 mM, membrane potential hyperpolarized to -50 mV from -40 mV. Hyperpolarization by $K^+$ was inhibited by barium but not by ouabain. When the membrane potential was held at resting membrane potential and the $[K^+]_o$ was elevated from 6 mM to 15 mM, outward currents increased; when elevated to 25 mM, inward currents increased. Fixing the membrane potential at resting membrane potential and comparing the barium-sensitive outward currents at $[K^+]_o$ of 6 and 15 mM showed that the barium- sensitive outward current increased at 15 mM $K^+.$ From the above results the following were concluded. Barium-sensitive $K^+$?channel activity increased when $[K^+]_o$ is elevated and this leads to an increase in $K^+-outward$ current. Consequently, the membrane potential hyperpolarizes, leading to the relaxation of resistant arteries, and this is thought to contribute to an increase in the local blood flow of brain.

  • PDF

Activation of Lysophosphatidic Acid Receptor Is Coupled to Enhancement of $Ca^{2+}$ -Activated Potassium Channel Currents

  • Choi, Sun-Hye;Lee, Byung-Hwan;Kim, Hyeon-Joong;Hwang, Sung-Hee;Lee, Sang-Mok;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.3
    • /
    • pp.223-228
    • /
    • 2013
  • The calcium-activated $K^+$ ($BK_{Ca}$) channel is one of the potassium-selective ion channels that are present in the nervous and vascular systems. $Ca^{2+}$ is the main regulator of $BK_{Ca}$ channel activation. The $BK_{Ca}$ channel contains two high affinity $Ca^{2+}$ binding sites, namely, regulators of $K^+$ conductance, RCK1 and the $Ca^{2+}$ bowl. Lysophosphatidic acid (LPA, 1-radyl-2-hydroxy-sn-glycero-3-phosphate) is one of the neurolipids. LPA affects diverse cellular functions on many cell types through G protein-coupled LPA receptor subtypes. The activation of LPA receptors induces transient elevation of intracellular $Ca^{2+}$ levels through diverse G proteins such as $G{\alpha}_{q/11}$, $G{\alpha}_i$, $G{\alpha}_{12/13}$, and $G{\alpha}s$ and the related signal transduction pathway. In the present study, we examined LPA effects on $BK_{Ca}$ channel activity expressed in Xenopus oocytes, which are known to endogenously express the LPA receptor. Treatment with LPA induced a large outward current in a reversible and concentration-dependent manner. However, repeated treatment with LPA induced a rapid desensitization, and the LPA receptor antagonist Ki16425 blocked LPA action. LPA-mediated $BK_{Ca}$ channel activation was also attenuated by the PLC inhibitor U-73122, $IP_3$ inhibitor 2-APB, $Ca^{2+}$ chelator BAPTA, or PKC inhibitor calphostin. In addition, mutations in RCK1 and RCK2 also attenuated LPA-mediated $BK_{Ca}$ channel activation. The present study indicates that LPA-mediated activation of the $BK_{Ca}$ channel is achieved through the PLC, $IP_3$, $Ca^{2+}$, and PKC pathway and that LPA-mediated activation of the $BK_{Ca}$ channel could be one of the biological effects of LPA in the nervous and vascular systems.

Ethylene Biosynthesis of an Alkalophilic Bacillus sp. Alk-7 (알카리성 Bacillus sp. Alk-7에 의한 Ethylene 생합성과 그 경로)

  • Bae, Moo;Kim, Mi-Ye
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.195-199
    • /
    • 1998
  • AH alkalophilic Bacillus SP. AIk-7, isolated from soil, produced ethylene. The characteristics of this microorganism is the ability to grow well under the alkaline condition, at pH 10.3. This strain is similar to Bacillus alkalophilus in terms of morphological, physiological and biological characteristics. In observation of relationship of cell growth and ethylene production according to incubation times, the ethylene synthesis mostly occur from the late exponential phase to the death phase of growth. The purpose of this paper is to study the effects of various substrates on the biosynthesis of ethylene in the intact cell and the cell-free system by the Bacillus sp. AIk-7. In both intact cell and cell-free extract, optimum conditions for ethylene production was achieved at pH 10.3 and 3$0^{\circ}C$. Ethylene was effectively produced from L-Met and 1-aminocyclopropane-1-carboxylic acid (ACC). In this case, ACC as the substrate on ethylene production were two fold higher than L-met at each concentration of substrates. On the other hand, the cell-free ethylene-forming system was used as a tool for the elucidation of the biochemical reaction involved in the formation of ethylene by Bacillus sp. AIk-7. Ethylene production in the cell-free system required the presence of manganese and cobalt ion to be stimulated a little. The result obtained in this work suggests that L-met and ACC may be a precursor more directly related to bacterial ethylene production than any other substrates tested.

  • PDF

Improvement of Rectangle Sedimentation basin using the Moving Baffle (이동식 정류장치를 이용한 횡류식 침전지 침전효율 개선 연구)

  • Cho, Young-Man
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.726-731
    • /
    • 2005
  • Sedimentation is treated as the most important unit process in waterworks, and plays great role on turbidity removal efficiency. Rectangle sedimentation basin is the most widely accepted sedimentation process. But it has some problems with short-circuit flow and density flow caused by temperature and influent turbidity variation. To solve these problems, installation of rectification wall was suggested, but not generally fully accepted in field. Because hole of rectification wall cause jet flow. In this research, use of moving baffle was investigated. Moving baffle was designed to induce uniform velocity at every section of water flow. The baffle walls was made from soft fiber materials. The baffle walls with flow of sedimentation basin moves at same speed. It is like that it controls density flow and short-circuit flow and induce uniform velocity at every section of water flow in sedimentation basin. When moving baffle was operated retention time of sedimentation basin was extended to 1 hours. When it talked again and the effluent time of highest concentration of the chlorine ion from 100 minutes was extended to 160 minutes. Turbidity removal efficiency was tested with different operation modes(continuous and batch) with influent turbidity and retention time. It was revealed that turbidity removal efficiency carl be improved up to 36%(continuous mode) and 58%(batch mode) respectively. Consequently if moving baffle introduces in Rectangle sedimentation basin, it forecasts that the turbidity improvement above 30% will be possible.

Removal Characteristics of Nitrogen and Phosphorus by Struvite Crystallization using Converter Slag as a Seed Crystal (제강전로슬래그를 정석재로 이용한 Struvite 정석반응에 의한 질소와 인의 제거특성)

  • Yim, Soo-Bin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.879-886
    • /
    • 2010
  • This study investigated the removal characteristics of highly concentrated $NH_4$-N and $PO_4$-P by struvite crystallization using converter slag as a seed crystal. The optimal pH range for removal and recovery of $NH_4$-N and $PO_4$-P by struvite crystallization was measured to be 8.0~8.75, in which total removal efficiencies for $NH_4$-N and $PO_4$-P by struvite precipitation and crystallization were 34.3~61.0% and 91.0~96.2%, respectively. The maximum removal efficiencies for $NH_4$-N and $PO_4$-P by struvite crystallization were 29.4% at pH 8.5 and 65.1% at pH 8.0, respectively. The removal efficiency of $NH_4$-N by struvite crystallization decreased with increasing calcium ion concentration. The analysis results of SEM, EDS and XRD exhibited that $NH_4$-N and $PO_4$-P in meta-stable region of struvite crystallization could be eliminated through formation of magnesium ammonia phosphate (MAP) and hydroxyapatite (HAp) on seed crystals by struvite precipitation and crystallization.

The Kinetics of Non-Enzymatic Browning Reaction in Green Tea During Storage at Different Water Activities and Temperatures (온도와 수분활성을 달리한 녹차 저장중의 비효소적 갈변)

  • Kim, Young-Suk;Jung, Yeon-Hwa;Chun, Soon-Sil;Kim, Mu-Nam
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.17 no.3
    • /
    • pp.226-232
    • /
    • 1988
  • Non-enzymatic browning is a carbohydrate dehydration reaction, accelerated thorough the interaction of amino compounds. Reaction depends on several factors including temperature, reactant concentration, pH, water activity and specific ion concentrations, and result in progressive development of brown pigments in the affected food systems. The present study was designed to utilize a kinetic approach to analyze the effect of temperature and water activity on the browning development in green ten. The green tea was controlled at aw of 0.33, 0.44, 0.52 and 0.65 using saturated salt solutions and then stored at 35,45 and $55^{\circ}C$. Author portion of the sample of which the water activities were controlled in the same manner was stored at 35 and $55^{\circ}C$ alternately with 7 days interval. Simplified kinetic models were used to obtain the various kinetic parameters for browning development in green tea subjected to accelerated shelf-life tests(ASLT). The reaction of browning development was zero order. The activation energies calculated from Arrhenius plot ranged $1.5{\sim}2.4kcal/mole$ and $Q_{10}$ values were between 1.07 and 1.12. These kinetic parameters were then used to predict browning development under the nonsteady storage. Assessed from the parameters the shelf-lives at $25^{\circ}C$, the time to reach 1.02 O.D./g solid at which severe brown color change could be detectable, ranged 57 to 113 days and showed decrease with increase in aw. The predicted shelf-lives at different water activities were a little higher than actual values.

  • PDF