• Title/Summary/Keyword: Ion beam etching

Search Result 133, Processing Time 0.032 seconds

Depth-dependent EBIC microscopy of radial-junction Si micropillar arrays

  • Kaden M. Powell;Heayoung P. Yoon
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.17.1-17.9
    • /
    • 2020
  • Recent advances in fabrication have enabled radial-junction architectures for cost-effective and high-performance optoelectronic devices. Unlike a planar PN junction, a radial-junction geometry maximizes the optical interaction in the three-dimensional (3D) structures, while effectively extracting the generated carriers via the conformal PN junction. In this paper, we report characterizations of radial PN junctions that consist of p-type Si micropillars created by deep reactive-ion etching (DRIE) and an n-type layer formed by phosphorus gas diffusion. We use electron-beam induced current (EBIC) microscopy to access the 3D junction profile from the sidewall of the pillars. Our EBIC images reveal uniform PN junctions conformally constructed on the 3D pillar array. Based on Monte-Carlo simulations and EBIC modeling, we estimate local carrier separation/collection efficiency that reflects the quality of the PN junction. We find the EBIC efficiency of the pillar array increases with the incident electron beam energy, consistent with the EBIC behaviors observed in a high-quality planar PN junction. The magnitude of the EBIC efficiency of our pillar array is about 70% at 10 kV, slightly lower than that of the planar device (≈ 81%). We suggest that this reduction could be attributed to the unpassivated pillar surface and the unintended recombination centers in the pillar cores introduced during the DRIE processes. Our results support that the depth-dependent EBIC approach is ideally suitable for evaluating PN junctions formed on micro/nanostructured semiconductors with various geometry.

유기막 위에 증착된 저온 ITO(Indium Tin Oxide) 박막의 식각특성

  • 김정식;김형종;박준용;배정운;이내응;염근영
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.99-99
    • /
    • 1999
  • 투명전도막인 Ito(Indium Tin Oxide)는 flat panel display 와 solar cell 같은 optoelectronic 이나 microelectronic device에서 널리 이용되어 지고 있다. 현재 상용화되고 있는 거의 대부분의 ITO 박막은 sputtering법에 의해 제조되고 있으나 공정상의 이유로 15$0^{\circ}C$이상의 기판온도가 요구되어진다. 그런, 실제 display device 제조공정에서는 비정질 실리콘 박막이나 유기막 위에 ITO박막을 제작할 필요성이 증대되어 지고 있고, 또한 다른 전자소자에 있어서도 상온 ITO 박막 형성 공정에 대한 필요성이 증대되고 있다. 이러한 이유로 본 실험에서는 IBAE(Ion Beam Assisted Evsporation)을 이용하여 저온 ITO박막을 유기막 위에 증착하는 공정에 대한 연구를 수행하였다. 이렇게 증착된 ITO 박막의 결정성은 비정질이었다. 또한, 모든 display device 제작에는 식각공정이 필수인데 기존에 사용되고 있는 wet etching 법은 등방성 식각특성 때문에 미세 pattern 형성에 부적합?, 따라서 비등방성 식각에 용이한 plasma etching법을 사용하여 저온 증착된 ITO 박막의 식각특성을 알아보았다. 실험에 사용된 식각장비는 자장 강화된 유도결합형 플라즈마 식각장비(MEICP)를 사용하였으며, 13.56MHz의 RF power를 사용하였다. 식각조건으로 source power는 600W~1000W, 기판 bias boltage는 -100V~-250V를 가하였으며, Ar, CH4, O2, H2, BCl3의 식각 gases, 5mTorr~30mTorr의 working pressure 변화 그리고 기판 온도에 따른 식각특성을 관찰하였다. ITO 가 증착된 기판으로는 유기물 중 투명전도성 박막에 기판으로서 사용가능성이 클 것으로 기대되어지는 PET(polyethylene-terephtalate), PC(polycarbonate), 아크릴을 사용하여 기판 변화가 식각특성에 미치는 영향에 대해서 각각 관찰하였다. 식각속도의 측정은 stylus profiler를 이용하여 측정하였으며 식각후에 표면상태는 scanning electron spectroscopy(SEM)을 이용하여 관찰하였다.

  • PDF

Fabrication and Evaluation of the Flexible and Implantable Micro Electrode (생체 삽입형 유연한 마이크로 전극의 제작 및 평가)

  • Baek Ju-Yeoul;Kwon Gu-Han;Lee Sang-Woon;Lee Ky-Am;Lee Sang-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.2
    • /
    • pp.93-99
    • /
    • 2006
  • In this paper, we fabricated and evaluated polydimethylsiloxane(PDMS)-based flexible and implantable micro electrodes. The electrode patterning was carried out with the photolithography and chemical etching process after e-beam evaporation of 100 ATi and 1000 A Au. The PDMS substrate was treated by oxygen plasma using reactive ion etching(RIE) system to improve the adhesiveness of PDMS and metal layers. The minimum line width of fabricated micro electrode was 20 $\mu$m. After finished patterning, we did packaging with PDMS and then brought up the electrode's part about 40 $\mu$m with gold electroplating. The Hank's balanced salt solution(HBSS) test was carried out for 6 month for endurance of fabricated micro electrode. We carried out in-vivo test for the evaluation of biocompatibility by implanting electrodes under the ICR mouse skin for 42 days.

Ion beam etching of sub-30nm scale Magnetic Tunnel Junction for minimizing sidewall leakage path

  • Kim, Dae-Hong;Kim, Bong-Ho;Chun, Sung-Woo;Kwon, Ji-Hun;Choi, Seon-Jun;Lee, Seung-Beck
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.12a
    • /
    • pp.29-30
    • /
    • 2011
  • We have demonstrated the fabrication of sub 30 nm MTJ pillars with PMA characteristics. The multi-step IBE process performed at $45^{\circ}$ and $30^{\circ}$, using NER resulted in almost vertical side profiles. There deposition on the sidewalls of the NER prevented lateral etching of the resist hard mask allowing vertical MTJ side profile formation without any reduction in the lithographically defined resist lateral dimensions. For the 28nm STT-MTJ pillars, the measured TMR ratio was 13 % with resistance of 1 $k{\Omega}$, which was due to remaining redeposition layers less than 0.1 nm thick. With further optimization in multi-step IBE conditions, it will be possible to fabricate fully operating sub 30 nm perpendicular STT-MTJ structures for application to future non-volatile memories.

  • PDF

Damage studies on irradiated tungsten by helium ions in a plasma focus device

  • Seyyedhabashy, Mir mohammadreza;Tafreshi, Mohammad Amirhamzeh;bidabadi, Babak Shirani;Shafiei, Sepideh;Nasiri, Ali
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.827-834
    • /
    • 2020
  • Damage of tungsten due to helium ions of a PF device was studied. The tungsten was analyzed by SEM and AFM after irradiation. SEM revealed fine bubbles of helium atoms with diameters of a few nanometers, which join and form larger bubbles and blisters on the surface of tungsten. This observation confirmed the results of molecular dynamics simulation. SEM analysis after etching of the irradiated surface indicated cavities with depth range of 35-85 nm. The average fluence of helium ion of the PF device was calculated about 5.2 × 1015 cm-2 per shot, using Lee code. Energy spectrum of helium ions was estimated using a Thomson parabola spectrometer as a function of dN/dE ∝ E-2.8 in the energy range of 10-200 keV. The characteristics of helium ion beam was imported to SRIM code. SRIM revealed that the maximum DPA and maximum helium concentration occur in the depth range of 20-50 nm. SRIM also showed that at depth of 30 nm, all of the tungsten atoms are displaced after 20 shots, while at depth of higher than 85 nm the destruction is insignificant. There is a close match between SRIM results and the measured depths of cavities in SEM images of tungsten after etching.

Microstructure and plasma resistance of Y2O3 ceramics (Y2O3 세라믹스의 미세구조 및 플라즈마 저항성)

  • Lee, Hyun-Kyu;Lee, Seokshin;Kim, Bi-Ryong;Park, Tae-Eon;Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.268-273
    • /
    • 2014
  • $Y_2O_3$ ceramic specimens were fabricated from the granular powder, obtained by spray drying process from the slurry. The slurry was prepared by mixing PVA binder, NaOH for Ph control, PEG and $Y_2O_3$ powder. The $Y_2O_3$ specimen was shaped in size of ${\phi}14mm$ and then sintered at $1650^{\circ}C$. The characteristics, microstructure, densities and plasma resistance of the $Y_2O_3$ specimens were investigated with the function of forming pressure and sintering time. $Y_2O_3$ specimens were exposed under the $CHF_3/O_2/Ar$ plasma, the dry etching treatment of specimens was carried out by the physical reaction etching of $Ar^+$ ion beam and the chemical reaction etching of $F^-$ ion decomposed from $CHF_3$. With increasing sintering time, $Y_2O_3$ specimens showed relatively high density and strong resistance in plasma etching test.

Band Alignment at CdS/wide-band-gap Cu(In,Ga)Se2 Hetero-junction by using PES/IPES

  • Kong, Sok-Hyun;Kima, Kyung-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.5
    • /
    • pp.229-232
    • /
    • 2005
  • Direct characterization of band alignment at chemical bath deposition $(CBD)-CdS/Cu_{0.93}(In_{1-x}Ga_x)Se_2$ has been carried out by photoemission spectroscopy (PES) and inverse photoemission spectroscopy (IPES). Ar ion beam etching at the condition of the low ion kinetic energy of 400 eV yields a removal of surface contamination as well as successful development of intrinsic feature of each layer and the interfaces. Especially interior regions of the wide gap CIGS layers with a band gap of $1.4\~1.6\;eV$ were successfully exposed. IPES spectra revealed that conduction band offset (CBO) at the interface region over the wide gap CIGS of x = 0.60 and 0.75 was negative, where the conduction band minimum of CdS was lower than that of CIGS. It was also observed that an energy spacing between conduction band minimum (CBM) of CdS layer and valance band maximum (VBM) of $Cu_{0.93}(In_{0.25}Ga_{0.75})Se_2$ layer at interface region was no wider than that of the interface over the $Cu_{0.93}(In_{0.60}Ga_{0.40})Se_2$ layer.

Oscillatory Josephson-Vortex Resistance in Stacks of $Bi_{2}Sr_{2}CaCu_{2}O_{8+x}$ Intrinsic Josephson Junctions

  • Choi Jae-Hyun;Bae Myung-Ho;Lee Hu-Jong;Kim Sang-Jae
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.17-21
    • /
    • 2005
  • We report the oscillation of the Josephson vortex-flow resistance in the rectangular stacks of $Bi_{2}Sr_{2}CaCu_{2}O_{8+x}$(Bi-2212) intrinsic Josephson junctions (IJJs). Apiece of Bi-2212 single crystal containing a few tens of IJJs was sandwiched between two gold electrodes and fabricated into a rectangular shape with the typical lateral size of about $1.5{\times}10\;{\mu}m^2$, using e-beam lithography and focused ion-beam etching techniques. In a tesla-range magnetic field applied in parallel with the junction planes, the oscillation of the Josephson vortex flow resistance was observed at temperatures near 60 K. The oscillation results from the interplay between the triangular Josephson vortex lattice and the potential barrier at the boundary of a single crystal. The oscillatory magnetoresistance for different bias currents, external magnetic fields, and the tilt-angles provides useful information on the dynamics of the coupled Josephson-vortex lattice system.

  • PDF

Development of a multi-functional nano-fabrication system for fabrication and measurement (가공 및 측정이 가능한 복합나노가공시스템의 개발)

  • 장동영;박만진;김진현;한동철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.466-471
    • /
    • 2004
  • In focused-ion-beam (FIB) application of micromachining and device transplantation, four kinds of FIB processes, namely FIB sputtering, FIB-induced etching, redeposition, and FIB-induced deposition, are well utilized. As with FIB systems, scanning electron microscopes(SEMs) were extensively used in the semiconductor industry. They are the tools of choice for defect review and providing the image resolution needed for process monitoring. The enhanced capabilities of a dual-column on one chamber system are quickly becoming realized by the nano industry for performing a wide range of application.

  • PDF

Assessment of Bottom NiFe Anomalous Exchange Bias by hi ion Beam Etching of Top NiFe in NiFe/FeMn/Al/NiFe (상부 NiFe의 Ar 이온빔 에칭에 의한 NiFe/FeMn/Al/NiFe 구조의 다층박막에서 하부 NiFe 교환바이어스 조사)

  • 윤상민;임재준;김철기;김종오
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.236-236
    • /
    • 2003
  • 교환바이어스(exchange bias)현상은 강자성과 반강자성의 접합계면에서 강한 상호 교환결합력에 의해 발생하는 것으로 알려져 있다. 이 현상은 1956년 Meiklejohn과 Bean에 의해 CoO층으로 둘러싸인 Co 입자에서 발견된 이후[l], 강자성과 반강자성의 접합계면을 가지는 다층박막에서의 교환바이어스에 대한 연구가 진행되어왔다[2-6]. 이는 강자성/반강자성 박막의 교환바이어스 특성을 이용하여, 강자성 박막의 스핀방향을 고정시킬 수 있기 때문이다. 이러한 교환바이어스 특성은 하드드라이브의 고밀도 자기헤드소자 및 비휘발성 자기메모리소자에 응용되어지는 등 경제적 가치를 갖는 기술적인 면과 교환바이어스라는 자기특성의 학문적인 가치로 인해 이 분야에 대한 집중적인 투자와 연구가 이루어지고 있다. 최근에는 교환바이어스 현상의 원인과 형성기구에 대한 연구가 활발히 진행되고 있다. 그러나 강자성과 반강자성 박막의 단거리 상호 교환결합력에 의한 교환바이어스 현상은, 계면의 원자구조, 자기구조 및 각자성층의 여러 가지 인자들에 대해서 지속적으로 연구되고 있다.

  • PDF