• Title/Summary/Keyword: Ion balance method

Search Result 26, Processing Time 0.026 seconds

Detection of Unbalanced Voltage Cells in Series-connected Lithium-ion Batteries Using Single-frequency Electrochemical Impedance Spectroscopy

  • Togasaki, Norihiro;Yokoshima, Tokihiko;Oguma, Yasumasa;Osaka, Tetsuya
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.415-423
    • /
    • 2021
  • For a battery module where single cells are connected in series, the single cells should each have a similar state of charge (SOC) to prevent them from being exposed to an overcharge or over-discharge during charge-discharge cycling. To detect the existence of unbalanced SOC cells in a battery module, we propose a simple measurement method using a single-frequency response of electrochemical impedance spectroscopy (EIS). For a commercially available graphite/nickel-cobalt-aluminum-oxide lithium-ion cell, the cell impedance increases significantly below SOC20%, while the impedance in the medium SOC region (SOC20%-SOC80%) remains low with only minor changes. This impedance behavior is mostly due to the elementary processes of cathode reactions in the cell. Among the impedance values (Z, Z', Z"), the imaginary component of Z" regarding cathode reactions changes heavily as a function of SOC, in particular, when the EIS measurement is performed around 0.1 Hz. Thanks to the significant difference in the time constant of cathode reactions between ≤SOC10% and ≥SOC20%, a single-frequency EIS measurement enlarges the difference in impedance between balanced and unbalanced cells in the module and facilitates an ~80% improvement in the detection signal compared to results with conventional EIS measurements.

The Study on the Power Consumption for Glass Melting by Cold Crucible Melter (CCM용융에 대한 유리용융 조건 연구)

  • Jin, Hyun-Joo;Lee, Kyu-Ho;Jung, Young-Jae;Bae, So-Young;Kim, Tae-Ho;Jung, Young-Joon;Kim, Young-Seok;Lee, Kang-Taek;Ryu, Bong-Ki
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.65-68
    • /
    • 2008
  • Generally CCM (cold crucible melting) is not suitable for melting glass. However, in this study we described the quantitative relationship between the basic property of glass and power balance, the power absorption in the melt, the losses in the coil and the cold crucible, for melting glass in CCM. The dependence of power balance on the applied frequency and the electric conductivity has been found. Above 300 kHz, the glass (B) contained alkali ion which has the low resistance $3.0{\Omega}{\cdot}cm$ at $900^{\circ}C$ and $1.36{\Omega}{\cdot}cm$ at $1,100^{\circ}C$ was melted easily and 60% of the overall power was absorbed in the melt and 30% and 10% of the overall power was lost in the cold crucible and coil respectively. Under the same condition, the glass (A) contained non-alkali ion was not melted easily and 50% of the overall power was absorbed in the melt and 40% and 10% of the overall power was lost in the cold crucible and coil respectively. In conclusion, the small absorbed power of the overall power in melt prevented a successful melting as for glass A, and the successful melting depends on the relative size of the absorbed power in melt irrespective of the melting volume. Hence, as typical for direct induction heating method(CCM), the successful melting strongly depended on the chosen working frequency based on electric conductivity of glass, power balance and the control of the critical power which was absorbed in melt.

Study on the Coordination Polymers of Metal (II) Ions with 2,5-Diamine 1,4-Dihydroxybenzene (2,5-Diamine 1,4-Dihydroxybenzene과 금속 (II) 이온이 만드는 Coordination Polymer에 관하여)

  • Joon Suk Oh;Kyun Ok Cho
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.309-312
    • /
    • 1969
  • A series of metal ion-2, 5-diamine 1, 4-dihydroxybenzene polymers containing copper(II), nickel(II) or cobalt (II) have been prepared. The structure was postulated on the basis of elementary analysis of polymers. It was found that copper polymer is most likely the coordination polymers by X-ray powder pattern studies. The thermal stability of the polymers was also studied by a simple method, utilizing a thermogravimetric balance. The order of thermal stabilities is Cu(II) > Ni(II) > Co(II). The polymers start to decompose at a relatively low temperature.

  • PDF

Theoretical approach on the heating and cooling system design for an effective operation of Li-ion batteries for electric vehicles (전기구동 자동차용 리튬이온 배터리의 고효율 운전을 위한 냉방 및 난방 시스템 설계에 대한 이론적 접근법)

  • Kim, Dae-Wan;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2545-2552
    • /
    • 2014
  • This study is aiming to suggest the effective thermal management system design technologies for the high voltage and capacity battery system of the electricity driven vehicles and introduce the theoretical designing methods. In order to investigate the effective operation of the battery system for the electricity driven vehicles, the heat generation model for Li-ion battery system using the chemical reaction while charging and discharging was suggested and the thermal loads of the heat sources (air or liquid) for cooling and heating were calculated using energy balance. Especially, the design methods for the cooling and heating of the battery system for maintaining the optimum operation temperature were investigated under heating, cooling and generated heat (during charging and discharging) conditions. The battery thermal management system for the effective battery operation of the electricity driven vehicles was suggested reasonably depending on the variation of the season and operation conditions. In addition, at the same conditions under summer season, the cooling method using the liquid and active cooling technique showed a relatively high capacity, while cooling method using the passive cooling technique showed a relatively low capacity.

Estimation of the Groundwater Recharge Rate during a Rainy Season at a Headwater Catchment in Gwangneung, Korea (광릉 원두부 소유역에서의 우기 중 지하수 함양률 평가)

  • Choi, In-Hyuk;Woo, Nam-Chil;Kim, Su-Jin;Moon, Sang-Ki;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.75-87
    • /
    • 2007
  • Groundwater recharge rates were estimated and compared in a headwater catchment at the Gwangneung Supersite using three different methods: water-table fluctuation (WTF), mass balance, and hydrograph separation techniques. Data were obtained during the rainy season from June to September 2005. Two different WTF methods estimated the groundwater recharge rate as 25.9% and 23.6%. The mass balance calculation of chloride ions indicated recharge rates of 13.4% on average. Baseflow separation using chloride ion as a tracer from six storm hydrographs produced a 14.0% net baseflow rate on average. Because of the implicit assumption of a long-term steady state without storage change, recharge rates calculated by mass balance and hydrograph separation were smaller than those done with WTF methods, which include the amount of increased storage due to the water-level rise. Subsequently, the WTF method is superior to others in the estimation of groundwater recharge rate to comprehend the dynamic characteristics of the hydrologic cycle.

Effect of By-Product Gypsum Fertilizer on Methane Gas Emissions and Rice Productivity in Paddy Field

  • Park, Jun-Hong;Sonn, Yeon-Kyu;Kong, Myung-Suk;Zhang, Yong-Seon;Park, Sang-Jo;Won, Jong-Gun;Lee, Suk-Hee;Seo, Dong-Hwan;Park, So-Deuk;Kim, Jang-Eok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.30-35
    • /
    • 2016
  • Rice cultivation in paddy field affects the global balance of methane ($CH_4$) as a key greenhouse gas. To evaluate a potential use of by-product gypsum fertilizer (BGF) in reducing $CH_4$ emission from paddy soil, $CH_4$ fluxes from a paddy soil applied with BGF different levels (0, 2, 4 and $8Mg\;ha^{-1}$) were investigated by closed-chamber method during rice cultivation period. $CH_4$ flux significantly decreased (p<0.05) with increasing level of BGF application. $8Mg\;ha^{-1}$ of BGF addition in soil reduced $CH_4$ flux by 60.6% compared to control. Decreased soil redox potential (Eh) resulted in increasing $CH_4$ emission through a $CO_2$ reduction reaction. The concentrations of dissolved calcium (Ca) and sulfate ion (${SO_4}^{2-}$) in soil pore water were significantly increased as the application rate of BGF increased and showed negatively correlations with $CH_4$ flux. Decreased $CH_4$ flux with BGF application implied that ${SO_4}^{2-}$ ion led to decreases in electron availability for methanogen and precipitation reaction of Ca ion with inorganic carbon including carbonate and bicarbonate as a source of $CH_4$ formation under anoxic condition. BGF application also increased rice grain yield by 16% at $8Mg\;ha^{-1}$ of BGF addition. Therefore, our results suggest that BGF application can be a good soil management practice to reduce $CH_4$ emission from paddy soil and to increase rice yield.

Structure analysis, and magnetic study of a new Gd-metal-organic framework single crystal grown by the slow-evaporation method (증발법으로 합성된 신규 가돌리늄 금속-유기골격체의 단결정 구조 분석 및 자성학적 특성 연구)

  • Song, Jeong Hwa
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.199-204
    • /
    • 2022
  • A new three-dimensional Gd-MOF, [Gd(p-XBP4)4(H2O)]·W(CN)8; (1; p-XBP4 = N,N'-p-phenylenedimethylenbis (pyridin-4-one)) has been synthesized by slow-evaporation and its crystal structure was characterized by single-crystal X-ray diffraction (SCXRD) analysis. For each GdIII ion, there are seven coordination sites, which are occupied by six oxygen atoms of six p-XBP4 ligands and one oxygen atom from the water molecule. The [W(CN)8]3- anion exists for charge balance with cationic framework. The GdII ions are interconnected by the p-XBP4 ligand to form the three-dimensional structure. Considering the magnetic property of lanthanide ions, magnetic studies of Gd-MOF were investigated by direct-current (DC) magnetic susceptibilities measurements.

A Study on the Flow and Dispersion in the Coastal Unconfined Aquifer (Development and Application of a Numerical Model) (해안지역 비피압 충적 대수층에서의 흐름 및 분산(수치모형의 개발 및 적용))

  • Kim, Sang Jun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.1
    • /
    • pp.61-72
    • /
    • 2016
  • In Korea, the aquifers at the coastal areas are mostly shallow alluvial unconfined aquifers. To simulate the flow and dispersion in unconfined aquifer, a FDM model has been developed to solve the nonlinear Boussinesq equation. Related analysis and verification have been executed. The iteration method is used to solve the nonlinearity, and the model shows 3-D shape because it is a 2-D y model that consider the undulation of water table and bottom. For the verification of the model, the output of flow module is compared to the 1-D analytic solution of Lee (1989) which have the drawdown or uplift boundary condition, and the two results show almost the same value. and the mass balance of dispersion module shows about 10% error. The developed model can be used for the analysis and design of the flow and dispersion in the unconfined aquifers. The model has been applied to the estuary area of Ssangcheon watershed, and the parameters have been deduced as a result : hydraulic conductivity is 90 m/day, and longitudinal dispersivity is 15 m. And the analysis with these parameters shows that the wells are situated in the influence circle of each others except for No. 7 well. Groundwater discharge to sea is $3700m^3/day$. And the chlorine ion ($cl^-$) concentration at the pumping wells increase at least 1000 mg/L if groundwater dam is not exist, so the groundwater dam plays an important role for the prevention of sea water intrusion.

Lagrangian Finite Element Analysis of Water Impact Problem (강체-유체 충격문제에 대한 Lagrangian 유한요소 해석)

  • Bum-Sang Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.60-68
    • /
    • 1991
  • The updated Lagrangian Finite Element Method is introduced to analyse rigid body-fluid impact problem which is characterized by incompressible Navier-Stokes equations and impact-contact conditions between free surface and rigid body. For the convenience of numerical computation, velocity fields are splinted into vicous and pressure parts, and then the governing equations and boundary conditions are decomposed in accordance with the decomposition. However, Viscous stresses acting an the solid boundaries are neglected on the assumption that very small velocity gradients may occur during extremely small time interval of the impact. Four coded quadrilateral elements are used to discretize the space domain and the fully explicit time-marching algorithm is employed with a reasonably small time step. At the beginning of each time step, contact velocity of the rigid body is computed from the momentum balance between the body and the fluid. The velocity field is then computed to satisfy the discretized equations of motions and incompressibility and contact constraints as well as an exact free surface boundary condition. At the end of each time step, the fluid domain is updated from the velocity field. In the present time stepping numerical analysis, behaviour of the free surface near the body can be observed without any difficulty which is very important in the water impact problem. The applicability of the algorithm is illustrated by a wedge type falling body problem. The numerical solutions for time-varying pressure distributions and impact loadings acting ion the surface are obtained.

  • PDF

A Review on Alkalinity Analysis Methods Suitable for Korean Groundwater (우리나라 지하수에 적합한 알칼리도 분석법에 대한 고찰)

  • Kim, Kangjoo;Hamm, Se-Yeong;Kim, Rak-Hyeon;Kim, Hyunkoo
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.509-520
    • /
    • 2018
  • Alkalinity is one of the basic variables, which determine geochemical characteristics of natural waters and participate in processes changing concentrations of various contaminants either directly or indirectly. However, not a few laboratories and researchers of Korea still use alkalinity-measurement methods not appropriate for groundwaters, and which becomes one of the major reasons for the poor ion balance errors of the geochemical analysis. This study was performed to review alkalinity-measurement methods, to discuss their advantages and disadvantages, and, thus, to help researchers and analytical specialists in analyzing alkalinity of groundwaters. The pH-titration-curve-inflection-point (PTC-IP) methods, which finds the alkalinity end point from the inflection point of the pH titration curve are revealed to be most accurate. Gran titration technique among them are likely to be most appropriate for accurate estimation of titrant volume to the end point. In contrast, other titration methods such as pH indicator method and pre-selected pH method, which are still commonly being used, are likely to cause erroneous results especially for groundwaters of low ionic strength and alkalinity.