• Title/Summary/Keyword: Ion adsorption

Search Result 871, Processing Time 0.026 seconds

One-pot synthesis of silica-gel-based adsorbent with Schiff base group for the recovery of palladium ions from simulated high-level liquid waste

  • Wu, Hao;Kim, Seong-Yun;Ito, Tatsuya;Miwa, Misako;Matsuyama, Shigeo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3641-3649
    • /
    • 2022
  • A simple solvothermal reaction was used to prepare a 3-aminopropyl-functionalized silica-gel-based adsorbent for adsorbing Pd(II) from the nitric acid solution. Scanning electron microscopy, fourier transform infrared spectroscopy, and thermogravimetry analysis were performed on the as-synthesized adsorbent to demonstrate the successful introduction of Schiff base groups. Batch experiments were used to investigate the effects of contact time, nitric acid concentration, solution temperature, and adsorption capacity. It is worth noting that the prepared adsorbent exhibited a higher affinity toward Pd(II) with the uptake approximately 100% even in a 2 M HNO3 solution. At an equilibrium time of 5 h, the maximum adsorption capacity of Pd(II) was estimated to be 0.452 mmol/g. The adsorbed Pd(II) could be completely eluted by dissolving 0.2 M thiourea solution in 0.1 M HNO3. Using a combination of particle-induced X-ray emission analysis and an X-ray photoelectron spectrometer, the adsorbed Pd was found to be uniformly distributed on the surface of the prepared adsorbent and the existing species were Pd(II) and zero-valent Pd(0). Due to the desirable performances, facile preparation method, and abundant raw material source, the prepared adsorbent demonstrated a high application potential in the recovery of Pd(II) from simulated high-level liquid waste treatment.

Column cleaning, regeneration and storage of silica-based columns (실리카 기반 컬럼의 세척, 재생 및 보관 가이드)

  • Matt James;Mark Fever
    • FOCUS: LIFE SCIENCE
    • /
    • no.1
    • /
    • pp.1.1-1.4
    • /
    • 2024
  • This article provides comprehensive guidance on the maintenance, cleaning, regeneration, and storage of silica-based HPLC (High-Performance Liquid Chromatography) columns. The general considerations emphasize the importance of using in-line filters and guard cartridges to protect columns from blockage and irreversible sample adsorption. While these measures help, contamination by strongly adsorbed sample components can still occur over time, leading to an increase in back pressure, loss of efficiency, and other issues. To maximize column lifetime, especially with UHPLC (Ultra-High Performance Liquid Chromatography) columns, it is advisable to use ultra-pure solvents, freshly prepared aqueous mobile phases, and to filter all samples, standards, and mobile phases. Additionally, an in-line filter system and sample clean-up on dirty samples are recommended. However, in cases of irreversible compound adsorption or column voiding, regeneration may not be possible. The document also provides specific recommendations for column cleaning procedures, including the flushing procedures for various types of columns such as reversed phase, unbonded silica, bonded normal phase, anion exchange, cation exchange, and size exclusion columns for proteins. The flushing procedures involve using specific solvents in a series to clean and regenerate the columns. It is emphasized that the flow rate during flushing should not exceed the specified limit for the particular column, and the last solvent used should be compatible with the mobile phase. Furthermore, the article outlines the storage conditions for silica based HPLC columns, highlighting the impact of storage conditions on the column's lifetime. It is recommended to flush all buffers, salts, and ion-pairing reagents from the column before storage. The storage solvent should ideally match the one used in the initial column test chromatogram provided by the manufacturer, and column end plugs should be fitted to prevent solvent evaporation and drying out of the packing bed.

  • PDF

A Study on the Removal of Low-concentration Fluoride-ion by Modified Alumina (변형 알루미나를 이용한 저농도 불소이온 제거 연구)

  • Kim, So-Young;Kim, Ju-Hee;Kim, Hyoun-Ja;Cho, Young-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.247-252
    • /
    • 2005
  • The typical treatment method for fluoride polluted water is the flocculation and precipitation method which usually is capable of reducing the fluoride concentration down to the level of about 10 ppm. However, this method is no longer effective for the treatment of contaminated water having less than 10 ppm of fluorides. To remove fluorides in polluted water from the fluoride concentration between 1 to 10 ppm, several adsorbents were prepared mainly based on an activated alumina and the fluoride removal efficiencies of the adsorbents were analyzed. The best fluoride removal efficiency was obtained when the activated alumina treated by sulfuric acid was used as the adsorbent. A proper calcination temperature for the sulfuric acid contained activated alumina was found to be about $500^{\circ}C$. An adsorption isotherm for the adsorbent was also obtained by using Freundlich model. The values of the constants in Freundlich isotherm model were calculated to be K=6.63 and 1/n=0.29 based on the results obtained from the series of batch type adsorption experiments.

Review on Risks of Perchlorate and Treatment Technologies (퍼클로레이트(Perchlorate)의 위해성과 저감기술 소개)

  • Shin, Kyung-Hee;Son, Ah-Jeong;Cha, Daniel K.;Kim, Kyoung-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1060-1068
    • /
    • 2007
  • Perchlorate contamination in aquatic system is a growing concern due to the human health and ecological risks associated with perchlorate exposure. In spite of potential risks associated with perchlorate, drinking water standard has not been established worldwide. Recently, US EPA has issued new protective guidance for cleaning up perchlorate contamination with a preliminary clean-up goal of 24.5 ppb. In Korea, the drinking water standard and discharge standard for perchlorate has not been established yet and little information is available to address perchlorate problems. Perchlorate treatment technologies include ion exchange, microbial reactor, carbon adsorption, composting, in situ bioremediation, permeable reactive barrier, phytoremediation, and membrane technology. The process description, capability, and advantage/disadvantages of each technology were described in detail in this review. One of recent trends in perchlorate treatment is the combination of available treatment options such as combined microbial reduction and permeable reactive burier. In this review, we provided a brief perspective on perchlorate treatment technology and to identify an efficient and cost-effective approach to manage perchlorate problem.

Characteristics of the TCE removal in FeO/Fe(II) System (FeO/Fe(II) 시스템에서 TCE의 제거 특성)

  • Sung, Dong Jun;Lee, Yun Mo;Choi, Won Ho;Park, Joo yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.149-152
    • /
    • 2008
  • The reaction between iron oxide and ferrous iron is known to be the adsorption of ferrous iron onto the oxide surfaces that produces Fe(II)-Fe(III) (hydr)oxides and ferrous oxide oxidized to ferric ion which is the reducing agent of the target compounds. In our investigations on DS/S using ferrous modified steel slag, the results did not follow the trends. FeO and Fe(II), the major component of steel slag, were used to investigate the degradation of TCE. Degradation did not take place for the first and suddenly degraded after awhile. Degradation of TCE in this system was unexpected because Fe(II)-Fe(III) (hydr)oxides could not be produced in absence of ferric oxide. In this study, the characteristics of FeO/Fe(II) system as a reducing agent were observed through the degradation of TCE, measuring byproducts of TCE and the concentration of Fe(II) and Fe(III). Adsorption of ferrous ion on FeO was observed and the generation of byproducts of TCE showed the degradation of TCE by reduction in the system is obvious. However it did not correspond with the typical reducing mechanisms. Future research on this system needs to be continued to find out whether new species are generated or any unknown mineral oxides are produced in the system that acted in the degradation of TCE.

Study on Characteristics and Preparation of Binderless BaX Granules for Separation of p-Xylene (파라자일렌 분리용 Binderless BaX 성형체의 합성 및 반응 특성에 관한 연구)

  • Jin, Jung-Hyun;Suh, Jeong-Kwon;Hong, Ji-Sook;Kim, Beum-Sik;Lee, Chang-Ha
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.80-86
    • /
    • 2009
  • In this study, binderless zeolite BaX granule, an effective adsorbent for the separation of p-xylene was made. This adsorbent which has a sufficient strength, high specific surface area and selectivity to p-xylene was prepared by various steps, such as granulation process, calcination, binderless treatment, ion-exchange, and activation. In the granulation, the concentration of colloidal silica solution was controlled in order to confirm the effect of $SiO_2$ contents after binderless treatment. As a result, we confirmed that the compressive strength of granule after binderless treatment was increasing with increasing proportion of $SiO_2$ in the granule. And then Na-ion in granule was exchanged with Ba-ion by successive batch ion-exchange process. And then prepared adsorbents were tested for p-xylene separation by batch adsorption at $90^{\circ}C$. As a results of batch adsortion test, we confirmed that prepared adsorbents have a high selectivity to p-xylene. Also, it could be conformed that the prepared binderless zeolite BaX has a sufficient compressive strength (0.450 kgf), high specific surface area $(647.57m^2/g)$, high crystallinity (98.5% compared with zeolite NaX powder), and selectivity to p-xylene.

Ion Exchange of Glutamic Acid Coupled with Crystallization (결정화 반응이 결합된 글루탐산의 이온교환)

  • 이기세
    • KSBB Journal
    • /
    • v.11 no.5
    • /
    • pp.606-612
    • /
    • 1996
  • A specific ammino auid in a mixture can be crystallized inside an ion exchange column when displacer concentration is high enough to concentrate the amino acid in a pure band beyond its solubility limit. Glutamic acid formpd a discrete crystal layer in a cation exchanger column by operating displacement development mode and using a high concentration of displacer NaOH. The glutamic acid crystal formed was eluded from the column with the effluent stream and collected in a fraction collector. When 1.0 M of NaOH was used as a displacer, more than 60% of the loaded glutamic acid was recovered as crystal. The continuous crystallization and dissolution of crystal occurred, resulting in apparent movement of the crystal along the column without clogging or pressure increase. NaOH was proved a better displacer than NaCl because hydroxide ions neutralized hydrogen ions released from the resin and thus reduced the number of hydrogen ion competing with sodium ion for re-adsorption. The displacement development process coupled with crystallization provided higher concentration and recovery of glutamic acrid than conventional chromatography.

  • PDF

Electrochemical Decomposition Characteristics of Ammonia by the Catalytic Oxide Electrodes (촉매성 산화물 전극에 의한 암모니아의 전기 화학적 분해 특성)

  • Kim, Kwang-Wook;Kim, Young-Jun;Kim, In-Tae;Park, Gun-Ill;Lee, Eil-Hee
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • In order to know the electrochemical decomposition characteristics of ammonia to nitrogen, this work has studied several experimental variables on the electrolytic ammonia decomposition. The effects of pH and chloride ion at $IrO_2$, $RuO_2$, and Pt anodes on the electrolytic decomposition of ammonia were compared, and the existence of membrane equipped in the cell and the changes of the current density, the initial ammonia concentration and so on were investigated on the decomposition. The performances of the electrode were totally in order of $RuO_2{\approx}IrO_2>Pt$ in the both of acid and alkali conditions, and the ammonia decomposition was the highest at a current density of $80mA/cm^2$, over which it decreased, because the adsorption of ammonia on the electrode surface was hindered due to the evolution of oxygen. The ammonia decomposition increased with the concentration of chloride ion in the solution. However, the increase became much dull over 10 g/l of chloride ion. The $RuO_2$ electrode among the tested electrodes generated the most OH radicals which could oxidized the ammonium ion at pH 7.

Hydrophilic Treatment of Porous Substrates for Pore-Filling Membranes (세공충진막을 위한 다공성 지지체 친수화 처리)

  • Dahye Jeong;Minyoung Lee;Jong-Hyeok Park;Yeri Park;Jin-Soo Park
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.4
    • /
    • pp.71-79
    • /
    • 2023
  • In this study, we employed anionic, cationic, and nonionic surfactants for the hydrophilization of porous substrates used in the fabrication of pore-filling membranes. We investigated the extent of hydrophilization based on the type of surfactant, its concentration, and immersion time. Furthermore, we used the hydrophilized substrates to produce pore-filling anion exchange membranes and compared their ion conductivity to determine the optimal hydrophilization conditions. For the ionic surfactants used in this study, we observed that hydrophilization progressed rapidly from the beginning of immersion when the applied concentration was 3.0 wt%, compared to lower concentrations (0.05, 0.5, and 1.0 wt%). In contrast, for the relatively larger molecular weight non-ionic surfactants, smooth hydrophilization was not observed. There was no apparent correlation between the degree of hydrophilization and the ion conductivity of the anion exchange membrane. This discrepancy suggests that an excessive hydrophilization process during the treatment of porous substrates leads to excessive adsorption of the surfactant on the sparse surfaces of the porous substrate, resulting in a significant reduction in porosity and subsequently decreasing the content of polymer electrolyte capable of ion exchange, thereby greatly increasing the electrical resistance of the membrane.

Desalination of Brackish Water by Capacitive Deionization System Combined with Ion-exchange Membrane (이온교환막을 결합한 축전식 탈염 시스템을 이용한 염수의 탈염)

  • Kim, Yu-Jin;Choi, Jae-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.87-92
    • /
    • 2010
  • Desalination experiments were carried out with two types of cell configuration; a CDI cell constructed with carbon electrodes only and a membrane capacitive deionization (MCDI) cell having a cation-exchange membrane on the cathode surface. The salt removal rate and desalination efficiencies increased linearly with increasing the cell potential. Although the same carbon electrodes were used in the desalination experiments, the MCDI cell showed higher salt removal efficiency than that of the CDI cell. The amount of salt removal for the MCDI cell was enhanced by 33.1~135% compared to the CDI cell, depending on the applied cell potential in the range of 0.8~1.2 V. In addition, the current efficiency for the MCDI cell was about 80%, whereas the efficiency was under 40% for the CDI cell. The higher salt removal efficiency in the MCDI cell was attributed to the fact that ions were selectively transported between the electric double layer and the bulk solution in the MCDI cell configuration.