• Title/Summary/Keyword: Ion Exchange Membrane

Search Result 467, Processing Time 0.023 seconds

Purification and Characterization of Antioxidative Peptides from Enzymatic Hydrolysate of Cod Teiset Protein (대구고니 단백질의 효소적 가수분해물로부터 항산화성 펩타이드의 분리${\cdot}$정제 및 특성)

  • KIM Se-Kwon;CHOI Yong-Ri;PARK Pyo-Jam;CHOI Jeoung-Ho;MOON Sung-Hoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.3
    • /
    • pp.198-204
    • /
    • 2000
  • In order to utilize by-products which would normally be discarded in marine processing plants, cod teiset protein was hydrolyzed and antioxidative actiTity of the hydrolysate was investigated. AntioxidatiTe peptide was isolated using ultrafiltration membrane, ion-exchange chromatography on a SP-Sephadex C-25 column, gel filtration on a Sephadex G-15 column, high performance liquid chromatography on an ODS column, and capillary electrophoresis chromatography. Antioxidative activities of the cod teiset hydrolysate were compared with ${\alpha}-tocopherol$, one of the commercial antioxidant. The hydrolysate passed through a membrane with molecular weight cut-off (MWCO) 1 kDa was shown the strongest antioxidative activity, and the activity was higher $10{\%}$ as compared with ${\alpha}-tocopherol$. In addition, the peptide isolated by ion-exchange chromatography, gel filtration, and HPLC, respectively, was higher $53{\%}$ as compared with ${\alpha}-tocopherol$, and the amino acid sequence was Ser-Asn-Pro-Glu-Trp-Ser-Trp-Asn.

  • PDF

Fractionation of Angiotensin Converting Enzyme(ACE) Inhibitory Peptides from Soybean Paste (된장으로부터 Angiotensin Converting Enzyme(ACE) 저해 Peptide의 분획)

  • Shin, Zae-Ik;Ahn, Chang-Won;Nam, Hee-Sop;Lee, Hyung-Jae;Lee, Hyung-Joo;Moon, Tae-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.230-234
    • /
    • 1995
  • Angiotensin converting enzyme(ACE) inhibitory peptides lowering blood pressure were fractionated from a commercial soybean paste(Doenjang). When the freeze-dried sample of soybean paste was extracted with cold water, the recovery yield of total nitrogen(TN) was shown to be 73.3% in 30 minutes. The cold water extract was filtered through PM-10 membrane(Amicon) for 3 hours in order to remove high molecular weight polypeptides. The TN and salt of ultrafiltrate were recovered to 80.8% and 99.2%, respectively, and its ACE $IC_{50}$ was $41.8{\mu}g/ml$. When the ultrafiltrate was divided into 7 fractions by reverse phase prep-HPLC, F5 fraction showed the highest ACE inhibitory activity ($IC_{50}=6.8{\mu}g/ml$) and salt could be collected into F1 fraction. Subsequently, the F5 fraction was divided into another five fractions by ion exchange prep-HPLC, all of which appeared to be high ACE inhibitory activity($IC_{50}=2.5{\sim}8.3{\mu}g/ml$). Among them, F53 fraction had the highest ACE inhibitory activity, and its main amino acid component was found to be histidine.

  • PDF

Improvement of Oxidative Stability for Non-fluorinated Membranes Prepared by Substituted Styrene Monomers (스티렌 유도체를 이용한 비불소계 고분자 전해질막의 산화적 안정성 개선)

  • Moon, Seung-Hyeon;Woo, Jung-Je;Fu, Rong-Qiang;Seo, Seok-Jun;Yun, Sung-Hyun
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.294-301
    • /
    • 2007
  • To improve oxidative stability of non-fluorinated styrene-based polymer electrolyte membranes, copolymerized membranes were prepared using styrene derivatives such as p-methylstyrene, t-butylstyrene, and ${\alpha}-methylstyrene$ by monomer sorption method. Prepared membrane was characterized by measurement of weight gain ratio, water content, ion-exchange capacity, proton conductivity, and oxidative stability under the accelerated condition. It was found that each step of monomer sorption method including sorption, polymerization and sulfonation could be affected by the properties and the structures of styrenederivatives. Due to difficulty of polymerization, ${\alpha}$-methylstyrene was copolymerized with styrene or p-methylstyrene. Prepared membrane using ${\alpha}-methylstyrene$ and styrene showed higher performance and stability comparing to copolymerized membrane with styrene. However, copolymerized membranes with ${\alpha}-methylstyrene$ did not showed much improved oxidative stability comparing to styrene membrane due to their lower molecular weight. The t-butylstyrene membrane showed a low performance due to substituted bulky-butyl group which prevents sorption and sulfonation reaction. However, copolymerized t-butylstyrene membranes with p-methylstyrene showed good performance and much improved stability than the styrene membranes.

Preparation and Characterization of Graft Copolymer/$TiO_2$ Nanocomposite Polymer Electrolyte Membranes (가지형 공중합체/$TiO_2$ 나노복합 고분자 전해질막의 제조 및 분석)

  • Koh, Jong-Kwan;Roh, Dong-Kyu;Patel, Rajkumar;Shul, Yong-Gun;Kim, Jong-Hak
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • A graft copolymer, i.e. poly(vinylidene fluoride-co-chlorotrifluoroethylene )-g-poly(styrene sulfonic acid) (P(VDF-co-CTFE)-g-PSSA) with 47 wt% of PSSA was synthesized via atom transfer radical polymerization (ATRP). This copolymer was combined with titanium isopropoxide (TTIP) to produce graft copolymer/$TiO_2$ nanocomposite membranes via sol-gel process. $TiO_2$ precursor (TTIP) was selectively incorporated into the hydrophilic PSSA domains of the graft copolymer and grown to form $TiO_2$ nanoparticles, as confirmed by FT-IR and UV-visible spectroscopy. Water uptake and ion exchange capacity (IEC) decreased with TTIP contents due to the decrease in number of sulfonic acid in the membranes. At 5 wt% of TTIP, the mechanical properties of membranes increased while maintaining the proton conductivity.

Characteristics of Microbial Fuel Cells Using Livestock Waste and Degradation of MEA (가축 분뇨를 이용한 미생물 연료전지의 특성 및 MEA 열화)

  • Kim, Young-Sook;Chu, Cheun-Ho;Jeong, Jae-Jin;Ahn, Myung-Won;Na, Il-Chai;Lee, Jeong-Hoon;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.175-181
    • /
    • 2014
  • Microbial fuel cells (MFC) were operated with livestock wastes and PEMFC (Proton Exchange Membrane Fuel Cells) MEA (Membrane and Electrode Assembly). OCV of MFC with mixtures of microbial was higher than that of MFC with single microbial. MFC using pig wastes showed highest OCV (540 mV) among cow waste, chicken waste and duck waste. And the power density of MFC using pig waste was $963mW/m^2$. Contamination of MEA with $Na^{2+}$, $Ca^{2+}$, $K^+$ ion and impurities was the one cause for low performance of MFC during operation.

Degradation of MEA and Characteristics of Outlet Water According to Operation Condition in PEMFC (고분자 전해질 연료전지 구동 조건에 따른 MEA 열화 및 배출수 특성)

  • Hwang, Byungchan;Lee, Sehoon;Na, Il-Chai;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.478-482
    • /
    • 2017
  • Humidity control of proton exchange membrane fuel cell(PEMFC) is very important control condition during driving. In terms of water management, low humidification conditions are advantageous, and high humidification is advantageous in terms of drainage utilization and energy efficiency. In this study, the characteristics of outlet water in low humidification and high humidification process were studied in terms of utilization of discharged water. Since the impurities in the effluent are generated during the degradation of the membrane and the electrode assembly(MEA), degradation of the MEA under low humidification and high humidification conditions was also studied. The rate of radical generation was high at low humidification condition of the anode RH 0%, which showed that it was the main cause of the degradation of the polymer membrane. Analysis of effluent showed low concentration of fluoride ion concentration of about 20 ppb at high humidification (both electrodes RH 100%) and 0.6 V, which was enough to be used as the feed water for electrolysis. Very low concentration of platinum below 0.2 ppb was detected in the condensate discharged from the high humidification condition.

Pervaporation Separation of Water/Ethanol Mixture Using PVA/PSSA-MA Ion Exchange Membranes (PVA/PSSA-MA 이온교환막을 이용한 물/에탄올 계의 투과증발분리)

  • Rhim Ji-Won;Cho Hyun-Il;Seo Moo-Young;Kim Dae-Hoon;Park In-Cheul;Nam Sang-Yong
    • Membrane Journal
    • /
    • v.16 no.3
    • /
    • pp.235-239
    • /
    • 2006
  • This study illustrated the results of pervaporation separation using crosslinked poly(vinyl alcohol) (PVA) with poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) for water-ethanol system at 25, 35, and $45^{\circ}C$. The contents of the crosslinking agents were 7, 9, and ll wt% against PVA and the feed compositions of 50, 20, 10 and 4.4% in water were investigated. Typical trends of permeability and separation factor in pervaporation were observed for both the crosslinking agents and operating temperatures. For water : ethanol = 10 : 90, and at $45^{\circ}C$, PSSA-MA 11 wt% membrane showed the permeability $58.92g/m^2{\cdot}hr$ and the separation factor 12003 respectively.

An Efficient Method for Co-purification of Eggshell Matrix Proteins OC-17, OC-116, and OCX-36

  • Zhang, Maojie;Wang, Ning;Xu, Qi;Harlina, Putri Widyanti;Ma, Meihu
    • Food Science of Animal Resources
    • /
    • v.36 no.6
    • /
    • pp.769-778
    • /
    • 2016
  • In this study, we improved the eggshell-membrane separation process by separating the shell and membrane with EDTA solution, evaluating effects of three different extraction solutions (acetic acid, EDTA, and phosphate solution), and co-purifying multiple eggshell proteins with two successive ion-exchange chromatography procedures (CM Sepharose Fast Flow and DEAE Sepharose Fast Flow). The recovery and residual rates of eggshell and membrane separated by the modified method with added EDTA solution were 93.88%, 91.15% and 1.01%, 2.87%, respectively. Ovocleidin-116 (OC-116) and ovocalyxin-36 (OCX-36) were obtained by loading 50 mM Na-Hepes, pH 7.5, 2 mM DTT and 350 mM NaCl buffer onto the DEAE-FF column at a flow rate of 1 mL/min, ovocleidin-17 (OC-17) was obtained by loading 100 mM NaCl, 50 mM Tris, pH 8.0 on the CM-FF column at a flow rate of 0.5 mL/min. The purities of OCX-36, OC-17 and OC-116 were 96.82%, 80.15% and 73.22%, and the recovery rates were 55.27%, 53.38% and 36.34%, respectively. Antibacterial activity test suggested that phosphate solution extract exhibited significantly higher activity against the tested bacterial strains than the acetic acid or EDTA extract, probably due to more types of proteins in the extract. These results demonstrate that this separation method is feasible and efficient.

Fabrication of intermediate-temperature solid oxide fuel cells with La0.6Sr0.4CoO3-𝛿 nanowires based on polycarbonate membrane filter (Polycarbonate 멤브레인 필터 기반 La0.6Sr0.4CoO3-𝛿 나노와이어가 적용된 중온형 고체산화물 연료전지 제작)

  • Kang Han;Young Gyun Goh;Gyu Jin Hwang;Hyun Ho Shin;Sung Soo Shin
    • Particle and aerosol research
    • /
    • v.20 no.3
    • /
    • pp.95-102
    • /
    • 2024
  • Enhancing the oxygen surface exchange reaction by increasing the specific surface area of the electrode is a promising structural approach to lowering the operating temperature of solid oxide fuel cells (SOFCs). Nanowire structures, due to their high specific surface area and lower tortuosity of ion and electron conduction pathways, play a vital role in enhancing SOFC electrode performance. In this study, we synthesized La0.6Sr0.4CoO3-𝛿 (LSC) nanowires using a polycarbonate membrane filter as a nanotemplate and applied them to the cathode for intermediate-temperature SOFC fabrication. The fabricated cell exhibited a 10% increase in peak power density at 650℃, achieving 0.506 W·cm-2, compared to cell using only commercial LSC powder. Furthermore, distribution of relaxation times analysis revealed a 15% reduction in area-specific polarization resistance in the mid-frequency range. These findings demonstrated that the electrode with LSC nanowires fabricated through electrospray deposition can significantly improve electrochemical performance of intermediate-temperature SOFC.

Property Changes of Anion Exchange Pore-filling Membranes According to Porous Substrates (지지체 종류에 따른 음이온 교환 함침막 특성 변화)

  • Jeon, Sang Hwan;Choi, Seon Hye;Lee, Byeol-Nim;Son, Tae Yang;Nam, Sang Yong;Moon, Sun Ju;Park, Sang Hyun;Kim, Ji Hoon;Lee, Young Moo;Park, Chi Hoon
    • Membrane Journal
    • /
    • v.27 no.4
    • /
    • pp.344-349
    • /
    • 2017
  • Alkaline fuel cells using polymer electrolyte membranes are expected to replace proton exchange membrane fuel cells, which have similar system configurations. In particular, in alkaline fuel cells, a low-cost non-platinium catalyst can be used. In this study, to fabricate high performance and high durability anion exchange membranes for alkaline fuel cell systems, two kinds of supports, polybenzoxazole and polyethylene supports, were impregnated with Fumion FAA ionomer, by which we tried to fabricate the support-impregnated membrane which has higher mechanical strength and higher ion conductivity than the Fumion series. Finally, the Pore-filling membranes were successfully fabricated and ionic conductivity and mechanical properties were different depending on the properties of the supports. In the pore-filling membranes with Fumion ionomer on the PE support, excellent mechanical properties were obtained, but ionic conductivity decreased. On the other hand, when the PBO support was impregnated with Fumion ionomer, high ionic conductivity was shown after impregnation due to high basicity of PBO, but the mechanical strength was relatively low as compared with Fumion-PE membrane. As a result, it was concluded that it is necessary to consider the characteristics of the support according to the operating conditions of the alkaline fuel cell during the preparation of the pore-filling membranes.