• Title/Summary/Keyword: Ion Conductivity

Search Result 838, Processing Time 0.028 seconds

Development of an Automated Diffusion Scrubber-Conductometry System for Measuring Atmospheric Ammonia

  • Lee, Bo-Kyoung;Lee, Chong-Keun;Lee, Dong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.2039-2044
    • /
    • 2011
  • A semi-continuous and automated method for quantifying atmospheric ammonia at the parts per billion level has been developed. The instrument consists of a high efficiency diffusion scrubber, an electrolytic on-line anion exchange device, and a conductivity detector. Water soluble gases in sampled air diffuse through the porous membrane and are absorbed in an absorbing solution. Interferences are eliminated by using an anion exchange devises. The electrical conductivity of the solution is measured without chromatographic separation. The collection efficiency was over 99%. Over the 0-200 ppbv concentration range, the calibration was linear with $r^2$ = 0.99. The lower limit of detection was 0.09 ppbv. A parallel analysis of Seoul air over several days using this method and a diffusion scrubber coupled to an ion chromatography system showed acceptable agreement, $r^2$ = 0.940 (n = 686). This method can be applied for ambient air monitoring of ammonia.

Ion Conduction Properties of PVDF based Polymer Electrolyte as a function of a Mixed Ratio (PVDF계 고분자 전해질의 혼합비에 따른 이온 전도 특성)

  • 김종욱;송희웅;구할본;이경섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.121-124
    • /
    • 1998
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li secondary battery. This paper describes temperature dependence of conductivity, impedance spectroscopy, electrochemical properties of PVDF electrolytes as a function of a mixed ratio. Polyvinylidene(PVDF) based polymer electrolyte films were prepared by thermal gellification method of preweighed PVDF, plasticizer and Li salt. The conductivity of PVDF electrolytes was 10$\^$-3/S/cm. 25PVDFPC$\_$10/EC$\_$10/LiClO$_4$ electrolyte shows the better conductivity of the others. 25PVDFPC$\_$10/EC$\_$10/LiClO$_4$electrolyte remains stable up to 4.7V vs. Li/Li$\^$+/. Steady state current method and ac impedance used for the determination of transference numbers in PVDFD electrolyte film. The transference number of 25PVDFPC$\_$10/EC$\_$10/LiClO$_4$electrolyte is 0.58.

  • PDF

Eco-Friendly and Thermal Conductivity Properties of Magnesium oxide Matrix Utilizing Bentonite (벤토나이트를 활용한 산화마그네슘 경화체의 친환경성 및 열저항 특성)

  • Gwon, Oh-Han;Lim, Hyun-Ung;Lee, Dong-Hoon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.64-65
    • /
    • 2016
  • This study that prevent cancer using absorbent to inflow Radon gas in the room existing soil and rock is making board to absorb the Radon gas as a fundamental study. So, we use bentonite as a absorbent. So, we use bentonite as a absorbent. Bentonite is a 'clay mineral' composed to montmorillonite of main component that volcanic ash denatured to a clay mineral. Bentonite has fine microparticle of nano level, abundant mineral 66 of kinds, adsorbability, swelling, a positive ion(heavy metal adsorption reaction) as a bentonite's property. Using magnesia cement for oxide of magnesiuma and magnesium chloride as a main binder, we measure Radon gas absorbent efficiency and thermal conductivity.

  • PDF

Complex of zinc(II) with tetraaza macrocyclic ligands in solution (용액에서 Zn(II)이온과 tetraaza 거대고리 리간드의 착물)

  • Koh Kwang-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.733-737
    • /
    • 2006
  • In this paper, we report the coordination state and structure of $Zn(cyclam)Cl_{2})$ complex that was studied by the Raman spectrum and conductivity method. The complex of zinc(II) ion with 1,4,8,11-tetraazacyclotetradecane(cyclam) ligand is formed in aqueous solution. According to the Raman spectrum of $Zn(cyclam)Cl_{2})$ complex, $H_{2}O$ molecule and $Cl^{-}$ ion compete for the trans coordination site of zinc(II) ion. We also have investigated the competition effect of $H_{2}O$ molecule and $Cl^{-}$ ion by the conductivity method. On addition of 1,4,8,11-tetraazacyclotetradecane(cyclam) ligand to the aqueous $ZnCl_{2}$ solution, 2: 1 electrolyte is changed to 1:1 electrolyte. We suggest the possibility of elimination of heavy metal because of the affinity effect of macrocyclic polyamine(1,4,8.11-tetraazacyclotetradecane) for the heavy metal,.

  • PDF

A Study on Ion Extraction Characteristics of Ceramics from Marine Archaeological Sources by the Saturated Solution Humidity System (포화염용액 습도시스템에 의한 수중 발굴 도자기의 이온용출 특성 연구)

  • Nam, Byeongjik;Jang, Sungyoon
    • Journal of Conservation Science
    • /
    • v.29 no.4
    • /
    • pp.421-435
    • /
    • 2013
  • The purpose of this study is to suggest environmental guidelines for the conservation of ceramics excavated from underwater. Accordingly, the conditional change of the soluble salt on surface of the excavated ceramics was examined by changing the relative humidity. Examining the relative ratio [high humidity(RH70%+RH80%)/low humidity(RH20%+ RH40%)] for 24 weeks using accumulated conductivity(${\mu}s/cm$), the result showed that the amount of ion elution increased more in high humidity than in low humidity. In particular, the ion elution increased significantly within the celadon sample. In addition, comparing the accumulated conductivity and physical characteristics of the samples in high humidity, the results indicated that the amount of the ion elution is proportioned to the increased rate of the sample's absorption capacity and porosity. Ceramics excavated from underwater has risks of the secondary physical and chemical attacks from remaining salts. Therefore, it is suggested these ceramics be stored in a storage which maintains proper temperature and low humidity conditions. Also, the collections need to be pre-classified according to the properties of the materials.

Preparation and Property of SBS Ion-exchange Membrane Via Post-sulfonation (Post-sulfonation에 의한 SBS 이온교환막의 제조 및 특성)

  • Choi, Yongjae;Hwang, Eui Hwan;Hwang, Taek Sung
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.731-736
    • /
    • 2010
  • In this study, the sulfonated SBS cation-exchange membrane was prepared by post-sulfonation. Degree of sulfonation(DS), water-uptake, ion exchange capacity and electrical resistance and conductivity of sulfonated SBS were investigated as a function of sulfonation time. The DS of sulfonated SBS membrane was increased with increasing the reaction time and concentration of sulfuric acid. The maximum value of DS was 24.0%. And also, the water uptake and ion exchange capacity of the sulfonated SBS membrane were increased as increasing the value of DS. The values of water uptake and IEC were 41.2% and 0.80 meq/g, respectively. The electrical resistance and conductivity of the membrane showed $23.6{\Omega}{\cdot}cm^2$ and $4.24{\times}10^{-4}S/cm$, respectively.

Phase Formation and Protoniz Conduction of La(Ba)$ScO_3$ Perovskites (La(Ba)$ScO_3$계 Perovskite의 생성상 및 Proton 전도)

  • Lee, Kyu-Hyoung;Kim, Hyu-Lim;Kim, Shin;Lee, Hyung-Jik;Lee, Hong-Lim
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.993-999
    • /
    • 2001
  • Phase formation and proton conduction in BaO doped LaSc $O_3$with perovskite structure were studied. L $a_{0.6}$B $a_{0.4}$Sc $O_{2.8}$, viz. 40at% $Ba^{2+}$ ion doped composition, showed a single cubic phase, while the other compositions doped less than 30 at% $Ba^{2+}$ ion showed the cubic phase and the orthorhombic one. Above $650^{\circ}C$ oxygen ion conduction was dominant in $N_2$atmosphere and below this temperature proton conduction was observed in wet atmosphere. All compositions were found to be the pure proton conductors below 30$0^{\circ}C$. The proton conductivity (bulk) of L $a_{0.6}$B $a_{0.4}$Sc $O_{2.8}$ was higher than those of any other composition.osition.ion.

  • PDF

Preparation of Poly(ethylenimine) Anionic Exchnage Membrane Impregnated in Porous Polyethylene Membranes (다공성 폴리에틸렌 막에 폴리에틸렌이민을 함침 시킨 음이온교환막의 제조 연구)

  • Park, Chan-Jong;Kim, Il-Hyung;Kim, Sung-Pyo;Lee, Hak-Min;Cheong, Seong-Ihl;Choi, Ho-Sang;Rhim, Ji-Won
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.91-97
    • /
    • 2011
  • In this study, the anionic exchange membranes were prepared through the impregnation of polyethylenimine (PEI) into porous polyethylene (PE) separator and then crosslinking with isophrhaloyl dichloride (IPC). To characterize the resulting membranes, the contact angles, FT-IR, ion exchnage capacity and ion conductivity were measured. The amide group is produced the reaction between amines in PEI and -COCl in IPC. In case of ion exchange capacity, 1.96 meq./g dry membrane at the reaction time, 30 sec was decreased to 1.14 meq./g dry membrane at 600 sec reaction time. The ion conductivity, $9.15{\times}10^{-2}S/cm$ at 30 sec reaction time, was obtained.

Synthesis and Characterization of Vinylbenzyl Chloride-co-Styrene-co-Hydroxyethyl Acrylate (VBC-co-St-co-HEA) Anion-Exchange Membrane for All-Vanadium Redox Flow Battery (전바나듐계 레독스-흐름 전지용 Vinylbenzyl Chloride-co-Styrene-co-Hydroxyethyl Acrylate (VBC-co-St-co-HEA) 음이온교환막의 합성 및 특성)

  • Baek, Young-Min;Kwak, Noh-Seok;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.586-592
    • /
    • 2011
  • In this study, we synthesized vinylbenzyl chloride-co-styrene-co hydroxyethyl acrylate (VBC-co-St-co-HEA) copolymer that can be applied to redox the flow battery process. The anion exchange membrane was prepared by the amination and crosslinking of VBC-co-St-co-HEA copolymer. The chemical structure and thermal properties of VBC-co-St-co-HEA copolymer and aminated VBC-co-St-co-HEA(AVSH) membrane were characterized by FTIR, $^1H$ NMR, TGA, and GPC analysis. The membrane properties such as ion exchange capacity(IEC), electrical resistance, ion conductivity and efficiency of all-vanadium redox flow battery were measured. The IEC value, electrical resistance, and ion conductivity were 1.17 meq/g, $1.9{\Omega}{\cdot}cm^2$, 0.009 S/cm, respectively. The charge-discharge efficiency, voltage efficiency and energy efficiency from all-vanadium redox flow battery test were 99.5, 72.6 and 72.1%, respectively.

Stretchable Current Collector Composing of DMSO-dopped Nano PEDOT:PSS Fibers for Stretchable Li-ion Batteries (신축성 리튬이온전지를 위한 DMSO 도핑 PEDOT:PSS 나노 섬유 집전체)

  • Kwon, O. Hyeon;Lee, Ji Hye;Kim, Jae-Kwang
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.93-99
    • /
    • 2021
  • In order to decrease the weight of stretchable energy storage devices, interest in developing lightweight materials to replace metal current collectors is increasing. In this study, nanofibers prepared by electrospinning a conductive polymer, PEDOT:PSS, were used as current collectors for lithium ion batteries. The nanofiber showed improved electrical conductivity by using DMSO, a dopant, and indicated a stretch rate of 30% or more from the elasticity evaluation result. In addition, the use of the nanofiber current collector facilitates penetration of the liquid electrolyte and exhibits the effect of increasing the electronic conductivity through the nanofiber network. The lithium-ion battery using the DMSO-doped PEDOT:PSS@PAM nanofiber current collector indicated a high discharge capacity of 135mAh g-1, and indicated a high capacity retention rate of 73.5% after 1000 cycles. Thus, the excellent electrochemical stability and mechanical properties of conductive nanofibers showed that they can be used as lightweight current collectors for stretchable energy storage devices.