• Title/Summary/Keyword: Ion Column

Search Result 620, Processing Time 0.027 seconds

Determination of fluoride in fluorite mine wastewater by ion chromatography with post-wash technique (후세척-이온크로마토그래피를 이용한 형석 광산 폐수 중 플루오라이드 정량)

  • Song, Kyung-Sun;Eum, Chul-Hun;Kim, Sang-Yeon
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.383-388
    • /
    • 2006
  • Simple post-wash method by ion chromatography (IC) was established for the rapid and precise determination of fluoride ion in wastewater from mine in fluorite mineralized area. High sulfate in sample was retained in a pre-column and less strongly held fluoride ion was transferred to the principal separation system using modified conventional IC with switching technique. An analytical column with high capacity (AS 9 HC) was used as a pre-column to retain the amount of high sulfate. A guard column (AG 14) as a separation column was used to increase the response of fluoride and reduce the system pressure. According to the recovery of fluoride ion with one detector and the observation of sulfate peak with another conductivity detector, the optimum switching time of 10-port chromatographic injector was 4.3 min. The limit of detection (S/N = 3) of fluoride in synthetic solution containing $500mg\;L^{-1}$ sulfate was $2.4{\mu}g/L$, with $25{\mu}L$ sample volume.

Basic Study for Development of Denitrogenation Process by ion Exchange(II) (이온교환법에 의한 탈질소 공정개발의 기초연구(II))

  • 이민규;주창식
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.89-95
    • /
    • 1998
  • Ion exchange performance to remove nitrate in water was studied using commercially available strong base anion exchange resin of Cl- type in the batch and continuous column reactors. The performance was tested using the effluent concentration histories for continuous column or equilibrium conquilibrium between resin and solution. Anion exchange resin used in this study was more effective than activated carbon or zeolite for nitrate removal. With large resin amount or low initial concentration, nitrate removal characteristics for a typical gel-type resin was Increased. On considering the relation between the breakthrough capacity and nitrate concentration of the influent, the use of anion exchange resin were suitable for the hi선or order water treatment. The nitrate removal of above 90% could be possible until the effluent of above 650 BV was passed to the column. Thus, the commercially available strong base anion exchange resin of $Cl^-$ type used in thins study could be effectively used as economic material for treatment of the groundwater. The breakthrough curves showed the sequence of resin selectivity as $SO_4^{2-}$ > $NO_3$ > $NO^{2-}$ > $HCO_3^-$. The results of this study could be scaled up and used as a design tool for the water purification system of the real groundwater and surface water treatment processes.

  • PDF

Operating Parameters for Glutamic Acid Crystallization in Displacement Ion Exchange Chromatography

  • Lee, Kisay
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.117-121
    • /
    • 1997
  • Glutamic acid can be crystallized inside cation exchange column when displacer NaOH concentration is high enough to concentrate displaced glutamic acid beyond its solubility limit. Resulting crystal layer of glutamic acid was moved with liquid phase through the column, and thus could be eluted from the column and recovered in fraction collector. For the purpose of enhancing crystal recovery, effects of operating parameters on the crystal formation were investigated. The increase in the degree of crosslinking of resin favored crystal recovery because of its low degree of swelling. Higher concentration of displacer NaOH was advantageous. If NaOH concentration is too high, however, crystal recovery was lowered due to the solubility-enhancing effects of high pH and ionic strength. The decrease of mobile phase flow rate enhanced crystal recovery because enough time to attain local equilibrium could be provided, but film diffusion would control the overall crystal formation with extremely low flow rate. Lower temperature reduced solubility of glutamic acid and thus favored crystal formation unless the rate of ion exchange was severely reduced. The ion exchange operated by displacement mode coupled with crystallization was advantageous in reducing the burden of further purification steps and in preventing purity-loss resulted from overlapping between adjacent bands.

  • PDF

An Approach for Reducing Carbon-14 Stack Emissions via Optimal Use of Ion Exchang Resins at CANDU Plant

  • Sohn, Wook;Chi, Jun-Ha;Kang, Duk-Won
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.445-455
    • /
    • 2003
  • Relatively high carbon-14 emissions, which occurred at PHWR Plant during 1998 and 1999, made the site staff to implement several operational improvements: 1) the frequency and volume of the moderator cover gas purging were reduced through increased $O_2$ additions to the cover gas, 2) the 'old' resin columns were not used during re-start of the reactor from outage, 3) efforts were made to minimize air ingress, 4) the maximum service time of moderator ion-exchange columns were restricted to about 80 days. Through the improvements, the carbon-14 emission from each PHWR reactor returned to the normal levels during the remainder of 1999 and during 2000. We carried out a special surveillance at W-1 and W-3 from September 2001 to August 2002 to properly evaluate ways to optimize the use of moderator ion exchange resins from a C-14 perspective. The surveillance showed that only data that provided an operational marker for deciding when to remove the IX-resin column is an observed increase in the C-14 stack emissions themselves. Also, it is shown that any increase over the rate of 0.4 Ci $month^{-1}$ for two consecutive weeks may be the indication for an ion-exchange resin column change, especially if the IX-resin column has been in service for more than 80 days.

  • PDF

Characteristics of Cation Selectivity for Equilibrium and Column Cation Exchanges (평형 및 칼럼교환에서 양이온 선택도 특성)

  • 이석중;이인형
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.2
    • /
    • pp.156-159
    • /
    • 2002
  • Ion exchange is the most reliable process to remove the ionic impurities and the economic operation. ion exchange is widely used in water and wastewater treatment, especially softening and demineralization. ion selectivity depends on the hydrated radius, charge of ions and concentration. The objective of this study was to determine the selectivity order of cations with equilibrium and column ion exchanges and to investigate the effect of the background anion on selectivity. Cation selectivity increases with decreasing concentration and increasing charge ( $H^+$ < $K^+$ << $Cu^{2+}$ < $Co^{2+}$ < TEX>$Ca^{2+}$ << $Ce^{3+}$)in equilibrium and column cation adsorptions.

  • PDF

Direct Bio-regeneration of Nitrate-laden Ion-exchange Resin (질산성질소에 파과된 이온교환수지의 생물학적 직접 재생)

  • Nam, Youn-Woo;Bae, Byung-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.777-781
    • /
    • 2013
  • Ion-exchange technology is one of the best for removing nitrate from drinking water. However, problems related to the disposal of spent brine from regeneration of exhausted resins must be overcome so that ion exchange can be applied more widely and economically, especially in small communities. In this background, a combined bio-regeneration and ion-exchange system was operated in order to prove that nitrate-laden resins could be bio-regenerated through direct contact with denitrifying bacteria. A nitrate-selective A520E resin was successfully regenerated by denitrifying bacteria. The bio-regeneration efficiency of nitrate-laden resins increased with the amount of flow passed through the ion-exchange column. When the fully exhausted resin was bio-regenerated for 5 days at the flowrate of 30 BV/hr and MLSS concentration of $125{\pm}25mg/L$, 97.5% of ion-exchange capacity was recovered. Measurement of nitrate concentrations in the column effluents also revealed that less than 5% of nitrate was eluted from the resin during 5 days of bio-regeneration. This result indicates that the main mechanism of bio-regeneration is the direct reduction of nitrate by denitrifying bacteria on the resin.

Studies on the Analysis of Cations by Ion Chromatography (Ion Chromatography에 의한 혈액중에서 양ion의 분석에 관한 연구)

  • 박성우;김은호;유재훈;김을환
    • Journal of Environmental Health Sciences
    • /
    • v.16 no.2
    • /
    • pp.113-119
    • /
    • 1990
  • Many studies on the analysis of cations in blood have been reported. However, no suitable method for the pretreatment of blood for the determination of cations by Ion Chromotography. As a result, pretreatment method that the membrane filtration of plasma a diluted 1 to 100 fold acidified pH 3.5 was found to be the most suitable. The recoveris of monovalent cations in blood were yield 101%(Na$^{+}$). 102%(NH$^{+}_{4}$) and 101%(K$^{+}$) Determinations of divalent cations(Mg and Ca ions) in blood by Ion chromatography were summarized as followed conditions Separator Column : CS$_{3}$. Suppressor Column : CMMS. Eluent conen : 25m M-HCl/2mM-Histidine. Regenerant conen: 40mM-Ba(OH)$_{2}$.

  • PDF

Evaluation of Improvement on Sediment for Practical Application in Prawn Farm (새우 양식장에 적용을 위한 저질개선 평가)

  • Kim Woo-Hang;Kim Doo Hee
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.05b
    • /
    • pp.81-84
    • /
    • 2004
  • Control of Sediment is very important in prawn farm due to the eruption of toxic material such as W1ionized H2S, NH3 and NO2-. In this study, column test study, column with filter media such as activated carbon, zeolite, oyster shell and iron chloride to evaluate the reduction of toxicity from sediment ammonia-N(NH3) was effectively removed by Zeolite and oyster shell. It was indicated that ammonium ion(NH4+) was removed by ion exchange of zeolite. And the ammonia in the column of oyster shell was existed as the form of NH4+, which is not toxic for prawn because oyster shell was stably kept around pH 8. Therefore, some of ammonia(NH3) was reduced by oyster shell. Hydrogen sulfide and COD were effectively removed by adsorption of activated carbon and a partial removal of hydrogen sulfide was accomplished by Oyster shell. Phosphorous was removed by activated carbon, oyster shell and iron chloride. In prawn farm, the concentration of ammonia was increased with increase of pH by algae photosynthesis in the column of activated carbon, zeolite and iron chloride, but it was revealed that pH was stably kept in the column of oyster shell.

  • PDF

Separation Characteristics of IgY (Immunoglobulin Yolk) in Various HPLC Columns (다양한 HPLC Column에서의 IgY(Immunoglobulin Yolk) 분리특성)

  • Song, Sung Moon;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.659-665
    • /
    • 2012
  • IgY (Immunoglobulin Yolk) in egg yolk corresponds to IgG (Immunoglobulin G) in animal serum and plays an important role as immunological proteins in intestines. Carrageenan and Arabic gum were used as pretreatment agents to purify IgY from fresh egg yolk. DEAE (Diethylaminoethyl) Sepharose column in FPLC (Fast Protein Liquid chromatography) was an ion exchange tool to remove contaminants as well as to elute IgY from the column. GF HPLC (Gel Filtration High Performance Liquid Chromatography) enables to measure the molecular weights of IgY and to identify the purified IgY by comparing the molecular weight of standard IgY with the purified one. IgY is a heterogeneous group of different molecular weight and ionic properties, which was investigated with various IE HPLC (Ion Exchange High Performance Liquid Chromatography) columns such as AX, CX and SCX. Three peaks of IgY were separated in the AX column under the conditions of 0.5 M NaCl and pH=8. The SCX column also gave the three peaks of IgY at 0.5 M NaCl and pH=5.

Chromatographic Behavior of Proteins on Stationary Phase with Aminocarboxy Ligand

  • Li, Rong;Ju, Ming-Yang;Chen, Bin;Sun, Qing-Yuan;Chen, Guo-Liang;Shi, Mei;Wang, Xiao-Gang;Zheng, Jian-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.590-594
    • /
    • 2011
  • An aminocarboxy aspartic acid-bonded silica (Asp-Silica) stationary phase was synthesized using L-aspartic acid as ligand and silica gel as matrix. The standard protein mixtures were separated with prepared chromatographic column. The effects of solution pH, salt concentration and metal ion on the retention of proteins were examined, and also compared with traditional iminodiacetic acid-bonded silica (IDA-Silica) column. The results show that Asp-Silica column exhibited an excellent separation performance for proteins. The retention of proteins on Asp-Silica stationary phase was consistent with electrostatic characteristic of cation-exchange. The stationary phase displayed typical metal chelate property after fixing copper ion (II) on Asp-Silica. Under competitive eluting condition, protein mixtures were effectively isolated. Asp ligand showed better ion-exchange and metal chelating properties as compared with IDA ligand.