• Title/Summary/Keyword: Ion Channel

Search Result 445, Processing Time 0.028 seconds

Age-dependent expression of ion channel genes in rat

  • Sung-Cherl Jung;Tong Zhou;Eun-A Ko
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.85-94
    • /
    • 2023
  • Ion channels regulate a large number of cellular functions and their functional role in many diseases makes them potential therapeutic targets. Given their diverse distribution across multiple organs, the roles of ion channels, particularly in age-associated transcriptomic changes in specific organs, are yet to be fully revealed. Using RNA-seq data, we investigated the rat transcriptomic profiles of ion channel genes across 11 organs/tissues and 4 developmental stages in both sexes of Fischer 344 rats and identify tissue-specific and age-dependent changes in ion channel gene expression. Organ-enriched ion channel genes were identified. In particular, the brain showed higher tissue-specificity of ion channel genes, including Gabrd, Gabra6, Gabrg2, Grin2a, and Grin2b. Notably, age-dependent changes in ion channel gene expression were prominently observed in the thymus, including in Aqp1, Clcn4, Hvcn1, Itpr1, Kcng2, Kcnj11, Kcnn3, and Trpm2. Our comprehensive study of ion channel gene expression will serve as a primary resource for biological studies of aging-related diseases caused by abnormal ion channel functions.

Application of the H Infinity Control Principle to the Sodium Ion Selective Gating Channel on Biological Excitable Membranes

  • Hirayama, Hirohumi
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.23-38
    • /
    • 2004
  • We proposed the infinity control principle to evaluate the Biological function. The H infinity control was applied to the Sodium (Na) ion selective gating channel on the excitable cellular membrane of the neural system. The channel opening, closing and inactivation processes were expressed by movements of three gates and one inactivation blocking particle in the channel pore. The rate constants of the channel state transition were set to be voltage dependent. The temporal changes in amounts per unit membrane area of the channel states were expressed by means of eight differential equations. The biochemical mimetic used to complete the Na ion selective channel was regarded as noise. The control inputs for ejecting the blocking particle with plugging in the channel pore were set for the active transition from inactivated states to a closed or open state. By applying the H infinity control, we computed temporal changes in the channel states, observers, control inputs and the worst case noises. The present paper will be available for evaluating the noise filtering function of the biological signal transmission system.

Property-based Design of Ion-Channel-Targeted Library

  • Ahn, Ji-Young;Nam, Ky-Youb;Chang, Byung-Ha;Yoon, Jeong-Hyeok;Cho, Seung-Joo;Koh, Hun-Yeong;No, Kyoung-Tai
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.134-138
    • /
    • 2005
  • The design of ion channel targeted library is a valuable methodology that can aid in the selection and prioritization of potential ion channel-likeness for ion-channel-targeted bio-screening from large commercial available chemical pool. The differences of property profiling between the 93 ion-channel active compounds from MDDR and CMC database and the ACDSC compounds were classified by suitable descriptors calculated with preADME software. Through the PCA, clustering, and similarity analysis, the compounds capable of ion channel activity were defined in ACDSC compounds pool. The designed library showed a tendency to follow the property profile of ion-channel active compounds and can be implemented with great time and economical efficiencies of ligand-based drug design or virtual high throughput screening from an enormous small molecule space.

  • PDF

고려 인삼의 효능은 생체막 이온 채널 조절과 연관되어 있다는 증거들에 대하여

  • Na, Seung-Yeol
    • Bulletin of Food Technology
    • /
    • v.18 no.2
    • /
    • pp.52-58
    • /
    • 2005
  • 최근 20여년 동안 Panax ginseng의 다양한 효과가 연구 되어져 왔다. Panax ginseng의 주요 활성 성분인 ginsenosides는 오직 인삼에서만 발견되어지는 saponin이다. 최근 들어 신경, 非신경 또는 복합적으로 분포된 세포에서 ginsenoside가 $Ca^2+$, $K^+$,$Na^+$,$Cl^-$ channel이나 ligand gated ionchannel (5-HT3, nicotinic acetylcholine, NMDA receptor)과 같은 다양한 ion channel을 조절하는증거들이 발표되고 있다. Ginsenoside는 voltage-dependent $Ca^2+$, $K^+$,$Na^+$ channel의 활성을 억제하는 반면 $Ca^2+$-activated $Cl^-$ channel이나 $Ca^2+$-activated $K^+$ channel의 활성은 증가 시키는 것으로 나타났다. 또한 흥분성 ligand-gated ion channel인 $5-HT_3$, nicotinic acetylcholine, NMDA receptor의 활성은 억제한다. 본 총설에서는 현재까지 알려진 ion channel 활성에 대한 ginsenoside의 조절작용과 이것으로 인해 어떻게 생물학적 효능과 연결이 되어있는지에 대하여 이야기하고자 한다.

  • PDF

Ginseng and ion channels: Are ginsenosides, active component of Panax ginseng, differential modulator of ion channels?

  • Jeong, Sang-Min;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2005
  • The last two decades have shown a marked expansion in publications of diverse effects of Panax ginseng. Ginsenosides, as active ingredients of Panax ginseng, are saponins found in only ginseng. Recently, a line of evidences shows that ginsenosides regulate various types of ion channel activity such as $Ca^{2+},\;K^+,\;Na^+,\;Cl^-$, or ligand gated ion channels (i.e. $5-HT_3$, nicotinic acetylcholine, or NMDA receptor) in neuronal, non-neuronal cells, and heterologously expressed cells. Ginsenosides inhibit voltage-dependent $Ca^{2+},\;K^+,\;and\;Na^+$ channels, whereas ginsenosides activate $Ca^{2+}-activated\;Cl^-\;and\;Ca^{2+}-activated\;K^+$ channels. Ginsenosides also inhibit excitatory ligand-gated ion channels such as $5-HT_3$, nicotinic acetylcholine, and NMDA receptors. This review will introduce recent findings on the ginsenoside-induced differential regulations of ion channel activities and will further expand the possibilities how these ginsenoside-induced ion channel regulations are coupled to biological effects of Panax ginseng.

M Protein from Dengue virus oligomerizes to pentameric channel protein: in silico analysis study

  • Ayesha Zeba;Kanagaraj Sekar;Anjali Ganjiwale
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.41.1-41.11
    • /
    • 2023
  • The Dengue virus M protein is a 75 amino acid polypeptide with two helical transmembranes (TM). The TM domain oligomerizes to form an ion channel, facilitating viral release from the host cells. The M protein has a critical role in the virus entry and life cycle, making it a potent drug target. The oligomerization of the monomeric protein was studied using ab initio modeling and molecular dynamics simulation in an implicit membrane environment. The representative structures obtained showed pentamer as the most stable oligomeric state, resembling an ion channel. Glutamic acid, threonine, serine, tryptophan, alanine, isoleucine form the pore-lining residues of the pentameric channel, conferring an overall negative charge to the channel with approximate length of 51.9 Å. Residue interaction analysis for M protein shows that Ala94, Leu95, Ser112, Glu124, and Phe155 are the central hub residues representing the physicochemical interactions between domains. The virtual screening with 165 different ion channel inhibitors from the ion channel library shows monovalent ion channel blockers, namely lumacaftor, glipizide, gliquidone, glisoxepide, and azelnidipine to be the inhibitors with high docking scores. Understanding the three-dimensional structure of M protein will help design therapeutics and vaccines for Dengue infection.

The guided field distribution characteristics in the ion-exchange channel glass waveguide (이온 교환 채널 유리 도파로의 도파광 분포특성)

  • 박정일;박태성;천석표;정홍배
    • Electrical & Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.332-339
    • /
    • 1995
  • In this paper, it was investigated the guided field intensity distribution of the channel in the silver & potassium ion-exchange glass-waveguide. The guided field intensity distribution analysis of ion-exchange glass-waveguide was based on the combination of the WKB dispersion relationship method with a Gaussian distribution function of refractive index profile and the Field Shadow method to the modeling of the channel waveguide. As the results of the channel waveguide modeling, it was represented 2-dimensional and 3-dimensional field distribution of ion-exchange glass waveguide.

  • PDF

Electrical characteristics of voltage-dependent $Ca^{++}$ channel in rat chromaffin cell. (흰쥐 부신수질 세포에서 voltage-dependent $Ca^{++}$ 채널의 전기적 특성에 관한 연구)

  • Goo, Yong-Sook;Lee, Tae-Soo;Cha, Eun-Jong
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.05
    • /
    • pp.142-145
    • /
    • 1994
  • Calcium(Ca) ion plays an important role to trigger the secretion of important neurotransmitters. Since Ca ion flows into the cell thru the ion selective channel, the conductance of which depends on the transmembrane potential, the voltage-dependent characteristic of Ca ion channel is crucial to elucidate the stimulus-secretion coupling of exocytosis. The present study measured the Ca ion currents thru a whole-cell configuration patch at the transmembrane potential clamped at various desired levels in the rat chromaffin cell. The resultant current-voltage relationship was differentiated to obtain dynamic conductance at each clamped voltage. Based on these measured data, five numerical parameters were extracted to reveal electrical properties of Ca ion inflow process thru the voltage-gated channel. The present study can be applied to comparing the electrical characteristics of Ca channel under different experimental conditions. Also, further study is warranted to model the conformational changes of the channel molecules.

  • PDF

Action of Dammarane-Type Triterpenoidal Glycosides and Their Aglycones on Lipid Membranes (지질막에 대한 Dammarane-Type Triterpenoidal Glycosides와 그 Aglycones의 작용)

  • Kim, Yu.A.;Park, Kyeong-Mee;Hyun, Hack-Chul;Song, Yong-Bum;Shin, Han-Jae;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.20 no.3
    • /
    • pp.269-273
    • /
    • 1996
  • We investigated the effects of ginseng glycosides and their aglycones on processes of single ion channel formation and channel properties. The glycosides, Rg, and Rb, , and their aglycones, 20-(S)-protopanaxatriol (PT) and 20-(S)-protopanaxadiol (PD) increased the membrane permeability for ions. PT, PD, Rg1, and Rb1; at concentrations of 0.5, 3.0, 10.0 and 30.0 $\mu\textrm{g}$/ml respectively; Induced single ion channel fluctuations with the life times in the range of 0.1~1005 in open states and conductances from 5 to 30 pS in 1 M KCI. At high concentrations of these substances, rapid fluctuations of transmembrane ion current with amplitude from hundred pS to dozen nS were observed. Against other substances, ginsenoside Rbl began to increase the membrane conductance at concentration of about 60 $\mu\textrm{g}$/ml without fluctuation of single ion channel. Membranes treated with PT, PD, Rg1 and Rb1 are more permeable to K+, than to Cl while zero current membrane potentials with 10 gradients of KCI were 12, 16, 8, 25 mV respectively. Key words : Membrane conductance, single ion channel, ginsenosides.

  • PDF

Does ginsenoside act as a ligand as other drugs do?

  • Nah, Seung-Yeol
    • Proceedings of the Ginseng society Conference
    • /
    • 2005.11a
    • /
    • pp.32-40
    • /
    • 2005
  • The last two decades have shown a marked expansion in publications of diverse effects of Panax ginseng. Ginsenosides, as active ingredients of Panax ginseng, are saponins found in only ginseng. Recently, a line of evidences shows that ginsenosides regulate various types of ion channel activity such as Ca$^{2+}$, K$^+$, Na$^+$, Cl$^-$, or ligand gated ion channels (i.e. 5-HT$_3$, nicotinic acetylcholine, or NMDA receptor) in neuronal, non-neuronal cells, and heterologously expressed cells. Ginsenosides inhibit voltage-dependent Ca$^{2+}$, K$^+$, and Na$^+$ channels, whereas ginsenosides activate Ca$^{2+}$-activated Cl$^-$ and Ca$^{2+}$-activated K$^+$ channels. Ginsenosides also inhibit excitatory ligand-gated ion channels such as 5-HT$_3$. nicotinic acetylcholine, and NMDA receptors. This presentation will introduce recent findings on the ginsenoside-induced differential regulations of ion channel activities as a ligand as other drugs do.

  • PDF