• Title/Summary/Keyword: IoT-cloud

Search Result 394, Processing Time 0.03 seconds

Smart Device based ECG Sensing IoT Applications (스마트 디바이스 기반 ECG 감지 IoT 응용 서비스에 관한 연구)

  • Mariappan, Vinayagam;Lee, Seungyoun;Lee, Junghoon;Lee, Juyoung;Cha, Jaesang
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.18-23
    • /
    • 2016
  • Internet of things (IoT) is revolutionizing in the patient-Centered medical monitoring and management by authorizing the Smartphone application and data analysis with medical centers. The network connectivity is basic requirement to collect the observed human beings' health information from Smartphone to monitor the health from IoT medical devices in personal healthcare. The IoT environment built in Smartphone is very effective and does not demand infrastructure. This paper presents the smart phone deployed personal IoT architecture for Non-Invasive ECG Capturing. The adaptable IoT medical device cum Gateway is used for personal healthcare with big data storage on cloud configuration. In this approach, the Smartphone camera based imaging technique used to extract the personal ECG waveform and forward it to the cloud based big data storage connectivity using IoT architecture. Elaborated algorithm allows for efficient ECG registration directly from face image captured from Smartphone or Tablet camera. The profound technique may have an exceptional value in monitoring personal healthcare after adequate enhancements are introduced.

Developing a Sustainable IoT Platform (지속 가능한 IoT 플랫폼 개발)

  • Choi, Hyo Hyun;Lee, Gyeong young;Yun, Sang un
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.243-244
    • /
    • 2019
  • 본 논문에서는지속 가능한 IoT Platform을 개발 하였다. 개발된 IoT(Internet of Things) Platform은 센서를 제어하는 특정 시스템과의 통신을 통한 제어 및 데이터 전달에 용이하고, 제한된 통신 환경 및 낮은 전력에서도 지속적인 작동이 가능하여 가용성(Availability)과 확장성(Extensibility)이 뛰어나다. 본 논문에서는 지속 가능한 IoT Platform의 테스트를 위해 클라우드 컴퓨팅 플랫폼인 AWS EC2(Amazon Elastic Compute Cloud, EC2)에 구축하였으며, DataBase 서버로는 오픈 소스 관계형 데이터베이스 관리 시스템인 MariaDB를 선정하였으며, 센서를 제어하는 특정 시스템인 스마트 미러 시스템(Smart Mirror System)과 미세먼지 제어 시스템(Air Quality Control System)에 기존의 Google IoT Platform에서 사용되는 MQTT Protocol(Message Queuing Telemetry Transport Protocol)와 지속 가능한 IoT Platform를 위해 개발된 TCP/IP Protocol를 사용하여 비교했다. 개발된 IoT Platform은 UTM(Unmanned Aircraft System Traffic Management)으로 확장할 계획이다.

  • PDF

Performance Evaluation of an IoT Platform (듀티사이클 환경의 무선센서네크워크에서 분산 브로드캐스트 스케줄링 기법)

  • Dang, Thien-Binh;Tran, Manh-Hung;Le, Duc-Tai;Yeom, Sanggil;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.673-676
    • /
    • 2017
  • Accompanying the Internet of Things (IoT) is a demand of advanced applications and services utilizing the potential of the IoT environment. Monitoring the environment for a provision of context-aware services to the human beings is one of the new trends in our future life. The IoTivity Cloud is one of the most notable open-source platform bringing an opportunity to collect, analyze, and interpret a huge amount of data available in the IoT environment. Based on the IoTivity Cloud, we aim to develop a novel platform for comprehensive monitoring of a future network, which facilitates on-demand data collection to enable the network behavior prediction and the quality of user experience maintenance. In consideration of performance evaluation of the monitoring platform, this paper presents results of a preliminary test on the data acquisition/supply process in the IoTivity Cloud.

Ontology-based IoT Context Information Modeling and Semantic-based IoT Mashup Services Implementation (온톨로지 기반의 IoT 상황 정보 모델링 및 시맨틱 기반 IoT 매쉬업 서비스 구현)

  • Seok, Hyun-Seung;Lee, Yong-Ju
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.671-678
    • /
    • 2019
  • The semantic information provided through the semantic-based IoT system will produce new high value-added products that are completely different from what we have known and experienced. From this point of view, the key issue of current IoT technology and applications is the development of an intelligent IoT platform architecture. The proposed system collects the IoT data of the sensors from the cloud computer, converts them into RDF, and annotates them with semantics. The converted semantic data is shared and utilized through the ontology repository. We use KT's IoTMakers as a cloud computing environment, and the ontology repository uses Jena's Fuseki server to express SPARQL query results on the web using Daum Map API and Highcharts API. This gives people the opportunity to access the semantic IoT mash-up service easily and has various application possibilities.

A Secure Healthcare System Using Holochain in a Distributed Environment

  • Jong-Sub Lee;Seok-Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.261-269
    • /
    • 2023
  • We propose to design a Holochain-based security and privacy protection system for resource-constrained IoT healthcare systems. Through analysis and performance evaluation, the proposed system confirmed that these characteristics operate effectively in the IoT healthcare environment. The system proposed in this paper consists of four main layers aimed at secure collection, transmission, storage, and processing of important medical data in IoT healthcare environments. The first PERCEPTION layer consists of various IoT devices, such as wearable devices, sensors, and other medical devices. These devices collect patient health data and pass it on to the network layer. The second network connectivity layer assigns an IP address to the collected data and ensures that the data is transmitted reliably over the network. Transmission takes place via standardized protocols, which ensures data reliability and availability. The third distributed cloud layer is a distributed data storage based on Holochain that stores important medical information collected from resource-limited IoT devices. This layer manages data integrity and access control, and allows users to share data securely. Finally, the fourth application layer provides useful information and services to end users, patients and healthcare professionals. The structuring and presentation of data and interaction between applications are managed at this layer. This structure aims to provide security, privacy, and resource efficiency suitable for IoT healthcare systems, in contrast to traditional centralized or blockchain-based systems. We design and propose a Holochain-based security and privacy protection system through a better IoT healthcare system.

Design of Ahead-of-Time Compilation System for IoT-Cloud Fusion Virtual Machine System (IoT-Cloud 융합 가상기계 시스템을 위한 Ahead-of-Time 컴파일 시스템의 설계)

  • Choi, Chanwhi;Son, Yunsik;Lee, Yangsun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.1183-1185
    • /
    • 2017
  • 사물인터넷 기술의 사용이 증가하고 있으나 장치 및 플랫폼의 종류가 다양하여 한 번 구현한 응용 프로그램을 재사용하기 어렵다. 사물인터넷 장치에서 가상기계를 사용하여 이러한 문제점을 해결할 수 있지만 가상기계의 응용 프로그램 실행 속도는 네이티브 코드에 비해 속도가 느려 가상기계의 실행 속도를 개선할 필요가 있다. AoT 컴파일은 바이트코드를 네이티브 코드로 사전에 컴파일하여 가상기계의 실행 속도를 향상시키는 기법이다. 본 논문에서는 IoT-Cloud 융합 가상기계 시스템을 위한 AoT 컴파일 시스템을 설계한다. 설계한 시스템은 사물인터넷과 클라우드의 융합 환경에 적합하며, 바이트코드 중 일부만을 네이티브 코드로 컴파일하므로 네이티브 코드 로드에 의한 가상기계의 메모리 부담이 적다.

Information Security Model in the Smart Military Environment (스마트 밀리터리 환경의 정보보안 모델에 관한 연구)

  • Jung, Seunghoon;An, Jae-Choon;Kim, Jae-Hong;Hwang, Seong-Weon;Shin, Yongtae
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.2
    • /
    • pp.199-208
    • /
    • 2017
  • IoT, Cloud, Bigdata, Mobile, AI, and 3D print, which are called as the main axis of the 4th Industrial Revolution, can be predicted to be changed when the technology is applied to the military. Especially, when I think about the purpose of battle, I think that IoT, Cloud, Bigdata, Mobile, and AI will play many role. Therefore, in this paper, Smart Military is defined as the future military that incorporates these five technologies, and the architecture is established and the appropriate information security model is studied. For this purpose, we studied the existing literature related to IoT, Cloud, Bigdata, Mobile, and AI and found common elements and presented the architecture accordingly. The proposed architecture is divided into strategic information security and tactical information security in the Smart Military environment. In the case of vulnerability, the information security is divided into strategic information security and tactical information security. If a protection system is established, it is expected that the optimum information protection can be constructed within an effective budget range.

A Study on the Structure of Research Domain for Internet of Things Based on Keyword Analysis (키워드 분석 기반 사물인터넷 연구 도메인 구조 분석)

  • Namn, Su-Hyeon
    • Management & Information Systems Review
    • /
    • v.36 no.1
    • /
    • pp.273-290
    • /
    • 2017
  • Internet of Things (IoT) is considered to be the next wave of Information Technology transformation after the Internet has changed the process of doing business. Since the domain of IoT ranging from the sensor technology to service to the users is wide, the structure of the research domain is not delineated clearly. To do that we suggest to use the Technology Stack Model proposed by Porter et al.(2014) to measure the maturity level of IoT in organizations. Based on the Stack Model, for the general understandings of IoT, we do keyword analyses on the academic papers whose major research issue is IoT. It is found that the current status of IoT application from the perspectives of cloud and big data analytics is not active, meaning that the real value of IoT has not been realized. We also examine the cases which deal with the part of cloud process which is crucial for value accrual. Based on these findings, we suggest the future direction of IoT research. We also propose that IT is to value chain what IoT is to the Stack Model to derive value in organizations.

  • PDF

EEIRI: Efficient Encrypted Image Retrieval in IoT-Cloud

  • Abduljabbar, Zaid Ameen;Ibrahim, Ayad;Hussain, Mohammed Abdulridha;Hussien, Zaid Alaa;Al Sibahee, Mustafa A.;Lu, Songfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5692-5716
    • /
    • 2019
  • One of the best means to safeguard the confidentiality, security, and privacy of an image within the IoT-Cloud is through encryption. However, looking through encrypted data is a difficult process. Several techniques for searching encrypted data have been devised, but certain security solutions may not be used in IoT-Cloud because such solutions are not lightweight. We propose a lightweight scheme that can perform a content-based search of encrypted images, namely EEIRI. In this scheme, the images are represented using local features. We develop and validate a secure scheme for measuring the Euclidean distance between two descriptor sets. To improve the search efficiency, we employ the k-means clustering technique to construct a searchable tree-based index. Our index construction process ensures the privacy of the stored data and search requests. When compared with more familiar techniques of searching images over plaintexts, EEIRI is considered to be more efficient, demonstrating a higher search cost of 7% and a decrease in search accuracy of 1.7%. Numerous empirical investigations are carried out in relation to real image collections so as to evidence our work.

Design and Implementation of Context Synchronizer for Efficient Offloading Execution in IoT-Cloud Fusion Virtual Machine (IoT-Cloud 융합 가상 기계에서 효율적인 오프로딩 실행을 위한 문맥 동기화기의 설계 및 구현)

  • Kim, Sangsu;Son, Yunsik;Lee, Yangsun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.1199-1202
    • /
    • 2017
  • IoT-Cloud 융합 가상 기계 시스템은 저성능의 사물인터넷 장비에서 고성능 클라우드 서버의 연산력을 제공받는 오프로딩 기법을 사용한다. 오프로딩 기법을 사용하는 경우 실행 대상 프로그램은 사물인터넷 장비와 클라우드 서버 사이에 일관성이 유지되어야하기 때문에 문맥 동기화가 필요하다. 기존 IoT-Cloud 융합 가상 기계의 문맥 동기화 방식은 전체 문맥 동기화를 시도하기 때문에 네트워크 오버헤드가 증가하여 비효율적이다. 네트워크 오버헤드는 오프로딩 실행 성능을 기존보다 감소시킬 수 있기 때문에 효율적인 오프로딩을 위해서는 오프로딩 실행에 필요한 문맥 정보만을 동기화하여 네트워크 오버헤드를 줄여야 한다. 본 논문에서는 효율적인 오프로딩 실행을 위해 정적 프로파일링을 통해 추출된 문맥 정보를 기반으로 오프로딩 실행에 필요한 문맥 정보만을 동기화하는 문맥 동기화기를 설계 및 구현하였다. 오프로딩 실행에 필요한 문맥 정보만 동기화가 이뤄지면 문맥 동기화 시 발생하는 네트워크 오버헤드의 크기가 줄어들기 때문에 효율적인 오프로딩 실행이 가능하다.