

Thien-Binh Dang, Manh-Hung Tran, Duc-Tai Le, ,

e-mail: {dtbinh, hungtm, ldtai, sanggil12, choo}@skku.edu

Performance Evaluation of an IIoT Platform
Thien-Binh Dang, Manh-Hung Tran, Duc-Tai Le, Sanggil Yeom, Hyunseung Choo

The College of Software, Sungkyunkwan University

Abstract

Accompanying the Internet of Things (IoT) is a demand of advanced applications and services utilizing the
potential of the IoT environment. Monitoring the environment for a provision of context-aware services to the
human beings is one of the new trends in our future life. The IoTivity Cloud is one of the most notable open-source
platform bringing an opportunity to collect, analyze, and interpret a huge amount of data available in the IoT
environment. Based on the IoTivity Cloud, we aim to develop a novel platform for comprehensive monitoring of a
future network, which facilitates on-demand data collection to enable the network behavior prediction and the
quality of user experience maintenance. In consideration of performance evaluation of the monitoring platform,
this paper presents results of a preliminary test on the data acquisition/supply process in the IoTivity Cloud.

1. Introduction

Several significant technology changes have come together to
enable the rise of the Internet of Things (IoT) [1], [2], [3]. IoT is
envisioned to contain billions of devices, including RFID devices,
sensors, smartphones, cars and so on, in near future. To make
variety of smart systems such as smart city, smart health care,
smart transportation and smart manufacture feasible in the IoT
environment, such devices are required to generate a large
amount of data and communicate together [4]. There emerges the
development of software frameworks to allow the heterogeneous
IoT devices to communicate and leverage common software
applications.

IoTivity open-source software framework has been
developed to enable seamless device-to-device connectivity to
address the emerging needs of the IoT [4]. The project,
sponsored by the Open Connectivity Foundation (OCF) [6], aims
to create a new standard and an open source implementation,
which will help ensure interoperability among products and
services regardless of maker and across multiple industries,
including smart home, automotive, industrial automation, and
healthcare. The goal of the framework is an extensible and robust
architecture that works for smart and thin devices. As being
sponsored by a group of industry leaders, it is expected to
become a standard specification and certification program to
ensure secure and reliable connections between IoT devices and
the Internet.

Recently, the IoTivity Cloud open-source platform [7] has
been developed based on the IoTivity framework. The platform
brings an opportunity to collect, analyze, and interpret a huge
amount of data available in the IoT environment. The processed
data is then required to be available for a provision of smart
services to human beings. All these data should be acquired in
real-time, stored for a long period and analyzed in a proper way.
To this end, we aim to develop a high scalability and low
overhead monitoring platform. The monitoring platform will be
designed in a way of collecting any type of data into a cloud

database by utilizing IoTivity Cloud. This feature opens many
opportunities for network operators to customize the monitoring
system based on their demands in target deployment area.

In the scope of this paper, we study the stability and
scalability of the IoTivity Cloud, which is the most essential
component of our monitoring platform. Particularly, we measure
throughputs of Cloud Interface server in the IoTivity Cloud
under different network loads, in a simple testbed with single-
machine-based deployment. The main goal of this work is to
generate a baseline that we can use to re-evaluate the
performance of the whole platform in a cloud-based deployment.
For the rest of the paper we use the terms framework and
platform to refer to the IoTivity framework and the IoTivity
Cloud platform, respectively.

The rest of the paper is organized as follows. In Section 2,
some popular IoT platforms are reviewed. Section 3 provides
detail information of components in the IoTivity Cloud platform.
Our testbed, testing scenarios, and performance evaluation
results are presented in Section 4. Finally, we conclude our paper,
and discuss our future work in Section 5.

2. Related Work
There exist many open-source platforms now a day, that can
support entire development of IoT applications and systems [8].
In this section, we review some popular IoT platforms.
ThingWrox [9] is one of the earliest software platforms designed
to build and run the IoT applications. It focuses on rapid
development of IoT applications such as Smart Home, Smart
City, Smart Agriculture, Smart Grid, and Smart Water.
ThingWrox is a complete development suite that enables
application design, runtime, and intelligence environment.
ThingWrox uses REST, MQTT and sockets for data
communication. The strong features of ThingWrox include
modern and complete platform provisioning, faster deployment
and search-based intelligence.

2017년 춘계학술발표대회 논문집 제24권 제1호(2017. 4)

- 673 -

ThingSpeak [10] is an IoT application platform for the
development of IoT systems. With ThingSpeak, users can
develop applications which can collect data from sensors, such
as an application of location tracking, controlling, and
monitoring home appliances. The key features of the platform
include real time collection of data storage, data analytics and
visualization using MATLAB, open API supporting and
providing geolocation data. In addition, it enables an integration
with Tweeter, i.e. users can get update status of their devices
from tweets. The HTTP protocol is utilized to store or retrieve
data from things over the Internet or via a Local Area Network.

Google Cloud platform [11] enables developers to code, test
and deploy their IoT applications with highly scalable and
reliable infrastructure. The developers now just focus on the
programming work and Google handles issues regarding
infrastructure, scalability, computing power and data storage.
What make Google Cloud platform become one of the most
popular IoT platforms are fast global network, higher

supporting of various available cloud services like BigQuery,
PubSub, Connecting Arduino, RiptideIO and many more.

 A common theme among the above platforms is that there is
no performance evaluation report apart from general statements
about their stability, scalability, and cloud deployment ability.
Recently, Vandikas et.al. [12] have evaluated the performance of
their platform, called IoT-Framework [13]. The work of these
authors is our inspiration to evaluate the performance of the
IoTivity Cloud platform.

3. IoT Cloud Platform

IoTivity is an open source framework implementing OCF
standards for the IoT software developments. The framework
operates as middleware across all operating systems and
connectivity platforms. It consists of four key components
including (1) device and resource discovery, (2) data
transmission, (3) device management and (4) data management,
as shown in Figure 1 [5].

Figure 1. IoTivity common object model

The IoTivity discovery component supports multiple
discovery mechanisms for devices and resources in proximately
and remotely. IoTivity adopts the Constrained Application
Protocol (CoAP) [14] defined by the Internet Engineering Task
Force (IETF) [8] as a data transmission protocol. As CoAP is a
lightweight alternative to Hypertext Transfer Protocol (HTTP), it
can work with HTTP by using intermediaries to translate
between two protocols. While the data management component
supports the collection, storage and analytics of data from
various devices, the device management component aims to
provide a one-stop-shop that supports the configuration,
provisioning and diagnostics of devices in an IoT network.

IoTivity Cloud is an open-source platform that aims to
extend accessibility of IoTivity devices. The IoTivity Cloud
supports techniques such as HTTP to CoAP proxy and
OAuth2 [16] over CoAP to enable users to access their devices
under their preference accounts over the cloud. Architecture of
the IoTivity Cloud is depicted in Figure 2. The platform includes
IoT controllers who own IoT devices. To be widely used over
the cloud, both controllers and devices must be registered to the
cloud first. The devices read sensory data of the physical world,
and then send the data to IoTivity cloud servers. Once the data
have been published, IoT controllers can access them even they
are not co-located.

Figure 2. IoTivity Cloud architecture

Most of IoTivity framework core components are developed
in C and C++, but the IoTivity Cloud is developed in Java. In the
platform, servers are separated into two levels: IoTivity Region
Cloud (IRC) and IoTivity Global Cloud (IGC). IRC includes
regional Cloud Interface servers that accept connection from
both IoT devices and IoT controllers, receive sensory data and
sends RESTful messages through connected pipelines to IGC.
The IGC is the global cloud that includes Message Queue,
Resource Directory, and Account servers. The functionality of
each component is explained as follows:

 Cloud Interface (CI): a server acts as an interface of IGC.
It is basically a proxy of Message Queue, Resource
Directory, and Account servers. Additionally, CI handles
the server side OAuth2.0 handshake protocol and the
keep-alive messages from IoT devices to ensure the
connectivity between the devices and the cloud. Last but
not least, CI relays handler such that IoT devices and IoT
controllers can communicate when they are connected to
different regional clouds.

 Resource Directory (RD): a server supports device
registration, discovery, updating, or deleting to IoTivity
Cloud. It deploys MongoDB to manage the database of
IoT device information.

 Account server: a server supports third party OAuth2.0
enabled authentication providers like Google, Facebook,

Cloud. After a user sign up to the Account server, his/her
information and a corresponding access token will be
stored into a database. Consequently, the user can register
his/her devices to IoTivity Cloud for future use.

2017년 춘계학술발표대회 논문집 제24권 제1호(2017. 4)

- 674 -

 Message Queue (MQ): a broker exposes an interface for
clients to initiate a publish/subscribe interaction. The
server is built on the top of Apache Zookeeper [16] and
Apache Kafka [17]. Apache Zookeeper is an open source
providing high performance coordination service for
distributed applications. It is mainly used to track status of
nodes, content topics, and messages, stored in an Apache
Kafka cluster. Apache Kafka is a distributed
publish/subscribe messaging system. It is written in Scala
programming language and designed for processing of
real time activity stream data, e.g. logs and metrics
collections.

 IoTivity client: IoTivity client consists of IoT devices and
IoT controllers. An IoTivity client handles the client side
OAuth2.0 handshake protocol and sends keep-alive
messages to CI periodically. The client is also able to send
resource registration/discovery requests to the cloud.

4. Performance Evaluation

In this section, we describe performance evaluation of the
IoTivity Cloud. We start by depicting our testbed, and then
describing the testing scenarios. Finally, we discuss on selected
evaluation metrics and obtained evaluation results.

A. Testbed setting
Our testbed consists of four physical nodes as shown in Figure 3.
IoT device node is a Mid-2010 MacBook Pro with 4GB RAM
and an Intel Core 2 duo CPU 2.4 GHz. IoT controller node is
hosted in a laptop computer with 8GB RAM and an Intel Core i5
duo CPU 2.3 GHz. The CI is hosted in a desktop computer with
3 GB RAM and an Intel Core i5-2500 CPU 3.3 GHz. The IGC
with three components of MQ, Account, and RD servers is set up
in a single desktop computer. The computer has 16 GB RAM
and Intel Core i7 CPU 3.60 GHz. All the computers run the
Ubuntu 16.04 LTS operating system, and support IoTivity
framework 1.2.0. The IoTivity Cloud is deployed on the testbed
similar to its architecture. We have added Java hooking scripts
into source code of the CI and the MQ to measure the
performance of these servers. The size of requests/responses are
set in the simplest case where a message contains only one
character. The number of devices are varied to identify
maximum capacity of the system.

Figure 3. Testbed model

B. Testing methodology
We are interested in how the IoTivity platform operates under
stress testing with different number of IoT devices and IoT

controllers. In our testing, we generate multiple threads on the
IoT device node, each of them represents for a device which
generates data. Similarly, multiple processes of controller, which
receives data, run in the IoT controller node. Recall that we
especially focus on the throughput of the CI. Even though the
IoTivity Cloud is designed to deploy on a cluster of nodes, the
test we have conducted is intentionally narrowed to a single node
for the IRC and a single node for IGC.

We consider two testing scenarios. The first scenario uses
various number of IoT devices on producing side and no IoT
controllers. In this scenario, the CI is tasked to only process a
large number of post requests from IoT clients without
disseminating these post requests to IoT controllers. The second
testing scenario is similar to the first one but adding various
number of IoT controllers. In both testing scenarios, the IoT
devices generate post requests in a Poisson process [19]. In the
scope of this paper, we just experiment the first scenario, the
second scenario will be carried out in future work. The number
of IoT devices and the arrival rate (msg/sec) determine the
level of stress testing that the higher value of or the greater
number of IoT devices means more post requests arrive at the CI
in a period of time. The value of is set equally to all IoT
devices for an individual test. Donald Knuth describes a method
to generate random timings for a Poisson process in [20]. In this
method, the exact amount of time until the next event is
determined by the formula:

 where p is a random value between 0 and 1.

 The algorithms to generate random timings for a Poisson
process are demonstrated in the Algorithm 1 and 2. All source
code for the simulation, customized CI and customized MQ are
available on the Github in order to make the simulation and
evaluation are accessible and reproducible to wider audience.

C. Testing scenarios and results
We use a C++ program which generates a maximum number of
25000 CoAP-over-TCP post requests from IoT client towards
the CI. These requests are sent by IoT devices which are
represented by C++ threads. The number of IoT devices is set to
1, 10, 100, 500 and 1000. The size of one CoAP_over_TCP post
request is 0.109 KB and the size of one CoAP_over_TCP

2017년 춘계학술발표대회 논문집 제24권 제1호(2017. 4)

- 675 -

response is 0.087 KB. Each post request contains sensory data
in Cbor [18] format which is the data read from IoT devices.
is set to 15000 (req/sec). When the CI received a
CoAP_over_TCP post request:

(1) It forwards the request to the MQ
(2) The MQ extracts sensory data from the payload of the

request
(3) The MQ pushes sensory data into corresponding queue

in Kakfa publish/subscribe messaging system in order to make it
available to subscribers who have subscribed to the same queue

An optimization has been made on producing side is using a
single sign-in connection for all IoT devices. Since this
optimization does not set at the CI, the evaluation results will
not be impacted.

Figure 4. Throughput of CI server

Figure 4 illustrates similar trends of throughputs with

different numbers of IoT devices. It gradually increases and
reaches the maximum value before starting decreasing as the
number of requests continues to increase. The increase of
throughput can be justified by the fact that a greater number of
requests is introduced into the system and the system uses more
CPU utilization for handle those requests. On the other hand,
the throughput decreases when the number of requests is large
enough and impacts the processing capacity of the system. The
throughput increases from 252269.2 (msg/sec) for one IoT
device setup to 465519.2 (msg/sec) for 10 IoT devices setup, to
562967.7 (msg/sec) for 100 IoT devices setup and to 595406.2
(msg/sec) for 500 IoT devices setup. In other words, the
throughput increases at 343137 (msg/sec) which is almost a
57.63% increase. However, the maximum throughput lightly
decreases to 583455.1 (msg/sec) with the 1000 IoT devices
setup. The maximum throughput of the CI reaches 595406.2
(msg/sec) for 500 IoT devices setup in the scope of our testbed
configuration.

5. Conclusion

This work result can be used to re-evaluate the performance of
the platform in a clustered cloud based development. Our test
results indicate that the IoTivity Cloud is a stable platform since
no drops of messages have been found under the stress testing.
Moreover, the testing results show that the CI can handle a load
of 1000 IoT devices simultaneously and the maximum
throughput reaches 595406.2 (msg/sec).

Our next step is to continue this evaluation work on testing
scenario second as aforementioned. Moreover, we will consider

the performance evaluation regrading memory consumption of
both the CI and the MQ. In addition, we plan to use a number of
computers to generate heavy load instead of using a single
computer as this testbed did and then compare the results to the
results of this work. Finally, we will develop our IoT
monitoring platform based on the IoTivity Cloud and re-use this
work for performance evaluation.

ACKNOWLEDGEMENT

 (NRF-2010-0020210) Grand
ICT (IITP-2015-R6812-15-0001)

 .

References
[1] RFID Journal,

June 2009.
[2]

Comput. Netw., vol. 54, no. 15, pp. 2787 2805,
Oct. 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.comnet.2010.05.010

[3]
networks and the Internet of Things: Do we need a complete

Proceedings of the 1st International Workshop on
 Tokyo

(Japan): IEEE, December 2010, [Online]. Available:
https://www.nics.uma.es/pub/papers/calcaraz10.pdf

[4]
Ad Hoc

Networks, vol. 10, no. 7, pp. 1497 1516, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1570870512000674

[5] IoTivity software framework. [Online]. Available:
https://www.iotivity.org

[6] Open Connectivity Foundation. [Online]. Available:
https://openconnec tivity.org

[7] IoTivity Cloud. [Online]. Available:
https://wiki.iotivity.org/iotivity_cloud_programming_guide

[8]
International Journal of

Computer Science & Engineering Survey (IJCSES), vol.6,
no.6, pp. 61-74, December 2015.
doi:10.5121/ijcses.2015.6605.

[9] ThingWorx: Enterprise IoT Solutions and Platform Technology.
[Online]. Available: https://www.thingworx.com

[10] ThingSpeak: IoT Analytics. [Online]. Available:
https://thingspeak.com

[11] Google Cloud Platform: Google Cloud Computing, Hosting
Services & APIs. [Online]. Available: https://cloud.google.com

[12]
Proceeding of 2014 Eighth

International Conference on Next Generation Mobile Apps,
Services and Technologies. IEEE, 2014.

[13] IoT-Framework. [Online]. Available: https://github.com/projectcs13
[14] RFC 7252 Constrained Application Protocol. [Online].

Available: http://coap.technology
[15] The Internet Engineering Task Force (IETF®). [Online].

Available: https://www.ietf.org
[16] OAuth 2.0. [Online]. Available: https://oauth.net/2Zookeeper.

[Online]. Available: http://zookeeper.apache.org
[17] Kafka. [Online]. Available: http://kafka.apache.org
[18] Cbor Concise Binary Object Representation. [Online].

Available: http://cbor.io
[19] Poisson point process. [Online]. Available:

https://en.wikipedia.org/wiki /Poisson_point_process
[20] D. E. Knuth. The Art of Computer Programming Volume 1.

Addison-Weseley Publ. Co., 196

2017년 춘계학술발표대회 논문집 제24권 제1호(2017. 4)

- 676 -

