• Title/Summary/Keyword: IoT-cloud

Search Result 400, Processing Time 0.025 seconds

Dynamic Fog-Cloud Task Allocation Strategy for Smart City Applications

  • Salim, Mikail Mohammed;Kang, Jungho;Park, Jong Hyuk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.128-130
    • /
    • 2021
  • Smart cities collect data from thousands of IoT-based sensor devices for intelligent application-based services. Centralized cloud servers support application tasks with higher computation resources but introduce network latency. Fog layer-based data centers bring data processing at the edge, but fewer available computation resources and poor task allocation strategy prevent real-time data analysis. In this paper, tasks generated from devices are distributed as high resource and low resource intensity tasks. The novelty of this research lies in deploying a virtual node assigned to each cluster of IoT sensor machines serving a joint application. The node allocates tasks based on the task intensity to either cloud-computing or fog computing resources. The proposed Task Allocation Strategy provides seamless allocation of jobs based on process requirements.

Design and Implementation of a Smart Home Cloud Control System Using Bridge based on IoT (IoT 기반의 브리지를 이용한 스마트 홈 클라우드 제어 시스템 설계 및 구현)

  • Hao, Xu;Kim, Chul-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.865-872
    • /
    • 2017
  • Recently, in response to the Internet age, the demand for hardware devices has been increasing, centering on the rapidly growing smart home field, due to the growth and management of sensor and control technology, mobile application, network traffic, big data management and cloud computing. In order to maintain the sustainable development of the hardware system, it is necessary to update the system, and the hardware device is absolutely necessary in real time processing of complex data (voice, image, etc.) as well as data collection. In this paper, we propose a method to simplify the control and communication method by integrating the hardware devices in two operating systems in a unified structure to solve the simultaneous control and communication method of hardware under different operating systems. The performance evaluation results of the proposed integrated hardware and the cloud control system connected to the cloud server are described and the main directions to be studied in the field of internet smart home are described.

Research on Security Model and Requirements for Fog Computing: Survey (포그 컴퓨팅 보안 모델과 보안 요구사항 연구: 서베이)

  • Hong, Sunghyuck
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.5
    • /
    • pp.27-32
    • /
    • 2018
  • IoT technology is developing with various application areas in $4^{th}$ Industrial revolution. There are many users using the application services. Sensing data from various environment need to be transferred to cloud computing storage and store in the cloud storage. However, physical distance from the end node to cloud computing storage is far away, and it is not efficient to transfer data from sensors and store the sensing data in the cloud storage whenever sensing data happen. Therefore, Fog computing is proposed to solve these problems which can process and store the sensing data. However, Fog computing is new emerging technology, there is no standard security model and requirements. This research proposes to security requirements and security model for Fog computing to establish a secure and efficient cloud computing environment.

Real-time Monitoring System for Rotating Machinery with IoT-based Cloud Platform (회전기계류 상태 실시간 진단을 위한 IoT 기반 클라우드 플랫폼 개발)

  • Jeong, Haedong;Kim, Suhyun;Woo, Sunhee;Kim, Songhyun;Lee, Seungchul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.517-524
    • /
    • 2017
  • The objective of this research is to improve the efficiency of data collection from many machine components on smart factory floors using IoT(Internet of things) techniques and cloud platform, and to make it easy to update outdated diagnostic schemes through online deployment methods from cloud resources. The short-term analysis is implemented by a micro-controller, and it includes machine-learning algorithms for inferring snapshot information of the machine components. For long-term analysis, time-series and high-dimension data are used for root cause analysis by combining a cloud platform and multivariate analysis techniques. The diagnostic results are visualized in a web-based display dashboard for an unconstrained user access. The implementation is demonstrated to identify its performance in data acquisition and analysis for rotating machinery.

Implementation of AIoT Edge Cluster System via Distributed Deep Learning Pipeline

  • Jeon, Sung-Ho;Lee, Cheol-Gyu;Lee, Jae-Deok;Kim, Bo-Seok;Kim, Joo-Man
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.278-288
    • /
    • 2021
  • Recently, IoT systems are cloud-based, so that continuous and large amounts of data collected from sensor nodes are processed in the data server through the cloud. However, in the centralized configuration of large-scale cloud computing, computational processing must be performed at a physical location where data collection and processing take place, and the need for edge computers to reduce the network load of the cloud system is gradually expanding. In this paper, a cluster system consisting of 6 inexpensive Raspberry Pi boards was constructed to perform fast data processing. And we propose "Kubernetes cluster system(KCS)" for processing large data collection and analysis by model distribution and data pipeline method. To compare the performance of this study, an ensemble model of deep learning was built, and the accuracy, processing performance, and processing time through the proposed KCS system and model distribution were compared and analyzed. As a result, the ensemble model was excellent in accuracy, but the KCS implemented as a data pipeline proved to be superior in processing speed..

A Meta-Model for Development Process of IoT Application by Using UML

  • Cho, Eun-Sook;Song, Chee-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.121-128
    • /
    • 2019
  • An Internet of Things(IoT) technology which provides intelligent services by combining context-awareness based intelligences, inter-communication is made of between things and things or between things and person through the network connected with intelligent things is spreading rapidly. Especially as this technology is converged into smart device, mobile, cloud, big data technologies, it is applied into various domains. Therefore, this is different from existing Web or Mobile Application. New types of IoT applications are emerging by adapting IoT into Web or mobile. Because IoT application is not only focused on software but also considering hardware or things aspect, there are limitations existing development process. Existing development processes don't consider analysis and design techniques considering both hardware and things. We propose not only a meta-model for development process which can support IoT application's development but also meta-models for main activities in this paper. Especially we define modeling elements by using UML's extension mechanisms, provide development process, and suggest design techniques how to apply those elements into IoT application's modeling phase. Because there are many types of IoT application's type, we propose an Android and Arduino-based on IoT application as a case study. We expect that proposed technique can be applied into many of various IoT application development and design with a form of flexible and extensible as well as main functionalities or elements are more concretely described. As a result, it brings IoT application's flexibility and the effect of quality improvement.

Individual Presence-and-Preference-Based Local Intelligent Service System and Mobile Edge Computing (개인 프레즌스-선호 기반 지능형 로컬 서비스 시스템과 모바일 엣지 컴퓨팅 환경에서의 적용 방안)

  • Kim, Kilhwan;Jang, Jin-San;Keum, Changsup;Chung, Ki-Sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.523-535
    • /
    • 2017
  • Local intelligent services aim at controlling local services such as cooling or lightening services in a certain local area, using Internet-of-Things (IoT) sensor data in the area. As the IoT paradigm has evolved, local intelligent services have gained increasing attention. However, most of the local intelligent service mechanism proposed so far do not directly take the users' presence and service preference information into account for controlling local services. This study proposes an individual presence-and-preference-based local service system (IPP-LISS). We present a intelligent service control algorithm and implement a prototype system of IPP-LISS. Typically, the intelligence part of IPP-LISS including the prediction models, is generated on remote server in the cloud because of their compute-intense aspect. However, this can cause huge data traffic between IoT devices and servers in the cloud. The emerging mobile edge computing technology will be a promising solution of this challenge of IPP-LISS. In this paper, we implement IPP-LISS in the cloud, and then, based on the implementation result, we discuss applying the mobile edge computing technology to the IPP-LISS application.

Design of the Smart Application based on IoT (사물 인터넷 기반 스마트 응용의 설계)

  • Oh, Sun-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.151-155
    • /
    • 2017
  • With the rapid growth of the up-to-date wireless network and Internet technologies, huge and various types of things around us are connected to the Internet and build the hyper-connected society, and lots of smart applications using these technologies are actively developed recently. IoT connects human, things, space, and data with various types of networks to construct the hyper-connected network that can create, collect, share and appling realtime information. Furthermore, most of the smart applications are concentrated on the service that can collect and store realtime contexts using various sensors and cloud technology, and provide intelligence by making inferences and decisions from them nowadays. In this paper, we design a smart application that can accurately control and process the current state of the specific context in realtime by using the state-of-the-art ICT techniques such as various sensors and cloud technologies on the IoT based mobile computing environment.

Development of Wireless Base Station Remote Monitoring System Using IoT Based on Cloud Server (클라우드 서버 기반 IoT를 이용한 무선기지국 원격 감시시스템 개발)

  • Lee, Yang-weon;Kim, Chul-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.6
    • /
    • pp.849-854
    • /
    • 2018
  • Radio base stations, which are widely distributed across large areas, have many difficulties in managing them. Unmanned radio base stations in remote mountains are having a hard time accessing them in case of emergencies. Major telephone service providers only remotely control incoming and outgoing information and local small business partners responsible for maintaining actual facilities do not possess such technologies, so they are each checked during field visits. In this study, in order to process the sensor raw data and smoothing, we apply the particle filters and confirmed that the performance of sensor data accuracy is increased. Integrated system using temperature, humidity, fire condition, and power operation at a wide range of radio base stations under the real-time monitoring status is operated well. It show that all of the status of base station are monitored at the remote office using the cloud server through internet networking.

A Study on the Development of Language Education Service Platform for Teaching Assistance Robots (교사도우미 로봇을 활용한 어학교육 서비스 플랫폼 구축방안 연구)

  • Yoo, Gab-Sang;Choi, Jong-Chon
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.223-232
    • /
    • 2016
  • This study focuses on the new teaching assistance robot platform and the cloud-based education service model to support the server. In the client area we would like to use the teacher assistant robot in elementary school classrooms to utilize the language education service platform. Emerging IoT technology will be adopted to provide a comfortable classroom environment and various media interfaces. Extensive precedent review and case study have been conducted to identify basic requirements of proposed service platform. Embedded system and technology for image recognition, speech recognition, autonomous movement, display, touch screen, IR sensor, GPS, and temperature-humidity sensor were extensively investigated to complete the service. Key findings of this paper are optimized service platform with cloud server system and possibilities of potential smart classroom with intelligent robot by adopting IoT and BIM technology.